
OMPitchField Reference
for version 2.0

contents

pcset	 ! LIST-T-PRIMEFORMS 2

LIST-TI-PRIMEFORMS 3

T-PRIMEFORM 4

TI-PRIMEFORM 4

EXPAND-T-SETCLASS 5

EXPAND-TI-SETCLASS 5

XPOSE 6

NVERT 6

SET-COMPLEMENT 7

pfield	 ! MAKE-CYC-PFIELD 7

MERGE-PFIELDS 8

FIND-PC-IN-FIELD 8

FIND-PCSET-IN-FIELD 9
FIND-BOUNDED-CHORDS-IN-FIELD 9

filter	 ! FILTER-CHORDLIST 10

MAKE-BOUNDS-TEST 11

MAKE-WIDTH-TEST 11

MAKE-CARDINALITY-TEST 11

MAKE-SPACING-TEST 12

MAKE-VOICING-TEST 13

AND-TESTS 13

OR-TESTS 14

vector & sort	 ! VECTOR-DOTPROD 14

VECTOR-ANGLE 14

INCL-CLASSREP 15

INCL-VEC 16

! / OMPF2
INCL-VEC-ANGLE 17

PROG-CLASSREP 18

PROG-VEC 18

PROG-VEC-ANGLE 19

SORT+ 20

SORT+SELECT 21

SORT-KEY_INCL-VEC-SUM 22

SORT-KEY_INCL-VEC-ANGLE 23

SORT-KEY_PROG-VEC-SUM 23

SORT-KEY_PROG-VEC-ANGLE 24

SORT-KEY_WIDTH 24

utility	 ! MC->P 25

P->MC 25

P->PC 26

PARSE-INCL-CLASSREPS 26

PARSE-PROG-CLASSREPS 26

FLATTEN2CHORDLIST 27

OMPF / !3

list-t-primeforms
inputs

optional inputs

outputs

A t-setclass is a family of pcsets related to one another by transposition, and its t-primeform is
a member of the family, designated to represent the entire family.

This function lists the designated representative member of every t-setclass with the specified
cardinality card. This input parameter, normally an integer, can also be a list of integers, to
produce results for more than one cardinality. The modulus n can be one of two preset values:
12 for semitones or 24 for quartertones. The tag option facilitates the construction of the incl-
classreps parameter required as an input to several functions in OMPF (see the entry for incl-
classrep).

Compared to the orbites function in the Zn library, this function is much faster (because it
looks up values in a database rather than calculating them on the fly) but much less general
(mod-12 or -24 only).

card cardinality of desired primeforms integer in [2, n - 2] (or a list of
such integers, to produce results
for more than one cardinality)

n modulus of the pc space menu selection: 12 (default) or 24

tag option to insert :t at head of each
primeform

menu selection: NONE or :T

list of all mod-n t-primeforms of
specified cardinality

list (or list of lists) of pcsets (each
pcset a list of mod-n integers)

! / OMPF4

list-ti-primeforms
inputs

optional inputs

outputs

A ti-setclass is a family of pcsets related to one another by transposition and/or inversion, and
its ti-primeform is a member of the family, designated to represent the entire family.

This function lists the designated representative member of every ti-setclass with the specified
cardinality card. This input parameter, normally an integer, can also be a list of integers, to
produce results for more than one cardinality. The modulus n can be one of two preset values:
12 for semitones or 24 for quartertones. The tag option facilitates the construction of the incl-
classreps parameter required as an input to several functions in OMPF (see the entry for incl-
classrep).

Compared to the orbites function in the Dn library, this function is much faster (because it
looks up values in a database rather than calculating them on the fly) but much less general
(mod-12 or -24 only).

card cardinality of desired primeforms integer in [2, n - 2] (or a list of
such integers, to produce results
for more than one cardinality)

n modulus of the pc space menu selection: 12 (default) or 24

tag option to insert :t at head of each
primeform

menu selection: NONE or :T

list of all mod-n t-primeforms of
specified cardinality

list (or list of lists) of pcsets (each
pcset a list of mod-n integers)

OMPF / !5

t-primeform
inputs

optional inputs

outputs

A t-setclass is a family of pcsets related to one another by transposition, and its t-primeform is
a member of the family, designated to represent the entire family. The t-primeform algorithm
selects the pcset whose elements are maximally close to zero in a particular sense.

Will tolerate integers out of the mod-n range in pcset.

ti-primeform
inputs

optional inputs

outputs

A ti-setclass is a family of pcsets related to one another by transposition and/or inversion, and
its ti-primeform is a member of the family, designated to represent the entire family. The ti-
primeform algorithm selects the pcset whose elements are maximally close to zero in a
particular sense. This algorithm is equivalent (when n = 12) to one introduced by John Rahn
(1980) and adopted by Joseph Straus and Robert Morris among others; Allen Forte’s original
prime form algorithm (1973) produces different results in a small number of cases. (Essentially,

pcset any member of the t-setclass whose
primeform is sought (or a list of
these)

list (or list of lists) of mod-n
integers

n modulus of the pc space positive integer (12 by default)

primeform of the t-setclass to
which pcset belongs (or a list of
these)

list (or list of lists) of mod-n
integers

pcset any member of the ti-setclass
whose primeform is sought (or a
list of these)

list (or list of lists) of mod-n
integers

n modulus of the pc space positive integer (12 by default)

primeform of the ti-setclass to
which pcset belongs (or a list of
these)

list (or list of lists) of mod-n
integers

! / OMPF6
the Rahn prime form minimizes the number of large pc integers, while the Forte prime form
minimizes the largest one and then maximizes the number of small ones.)

Will tolerate integers out of the mod-n range in pcset.

OMPF / !7

expand-t-setclass
inputs

optional inputs

outputs

Given any member of a t-setclass, lists every member of that t-setclass. Will tolerate integers
out of the mod-n range in pcset.

expand-ti-setclass
inputs

optional inputs

outputs

Given any member of a ti-setclass, lists every member of that ti-setclass. Will tolerate integers
out of the mod-n range in pcset.

pcset any member of the desired t-
setclass (or list containing a
member of each desired t-setclass)

list of mod-n integers (or list of
such lists)

n modulus of the pc space positive integer (12 by default)

family of pcsets containing pcset
and all of its transpositions (or list
of these families)

list of lists of mod-n integers (or list
of these nested lists)

pcset any member of the desired ti-
setclass (or list containing a
member of each desired ti-setclass)

list of mod-n integers (or list of
such lists)

n modulus of the pc space positive integer (12 by default)

family of pcsets containing pcset
and all of its transpositions and
inversions (or list of these families)

list of lists of mod-n integers (or list
of these nested lists)

! / OMPF8

xpose
inputs

optional inputs

outputs

Performs pc-space transposition (n > 0) or p-space transposition (n = nil). Will tolerate integers
out of the mod-n range in p-or-pc and interval when performing pc-space transposition.

nvert
inputs

optional inputs

outputs

Performs pc-space inversion (n > 0) or p-space inversion (n = nil). The inversion of an element
x at index i is i – x; thus index represents the constant sum of each element and its inversion.
Will tolerate integers out of the mod-n range in p-or-pc and index when performing pc-space
inversion.

p-or-pc pitch or pc (or flat or nested list of
either)

integer or mod-n integer (or flat or
nested list of either)

interval directed interval of transposition integer or mod-n integer

n modulus of the pc space (if any) nonnegative integer (12 by default)

transposition of p-or-pc by
designated interval

integer or mod-n integer (or flat or
nested list of either)

p-or-pc pitch or pc (or flat or nested list of
either)

integer or mod-n integer (or flat or
nested list of either)

index index of inversion integer or mod-n integer

n modulus of the pc space (if any) nonnegative integer (12 by default)

inversion of p-or-pc at designated
index

integer or mod-n integer (or flat or
nested list of either)

OMPF / !9

set-complement
inputs

optional inputs

outputs

Computes the complement of pitch-or-pc-set with respect to space. In other words, returns
space with pitch-or-pc-set removed.

make-cyc-pfield
inputs

outputs

Generates a space of pitches that repeatedly unfolds a cyclic interval pattern. For instance, the
pitch field (… -4 0 1 5 6 10 11 15 …) unfolds the cycle (1 4). Assuming the cycle cannot
be partitioned exhaustively into copies of a smaller pattern (which rules out cycles like  
(3 2 3 2)), there will be M distinct transpositions of the field, where M is the sum of the
generating intervals. These pitch fields, which extend infinitely low and high in theory, retain
most of their interesting properties when truncated for use in composition. For more on the
underlying theory, see the author’s article, “Field Notes: A Study of Fixed-Pitch Formations,”
Perspectives of New Music 41.1 (Winter 2003): 180–239.

pitch-or-pc-set list (or list of lists) of pitches or
pitch classes

list (or list of lists) of integers

space pitch space or pc space in which
complementation is performed

list of integers

list of all elements in space that are
not members of pitch-or-pc-set

list (or list of lists) of integers

generator cycle of intervals from which
pfield is generated

list of integers

origin pitch in pfield coinciding with the
start of generator

integer

lo pitch below which pfield is
truncated

integer

hi pitch above which pfield is
truncated

integer

pfield space of pitches that unfolds
generator

list of integers

! / OMPF10
The resulting pfield is transposed so that a cycle of generator begins at origin, and it is
truncated between lo and hi.

OMPF / !11

merge-pfields
inputs

outputs

Merges the contents of any number of pitch fields, with duplicate pitches removed.

find-pc-in-field
inputs

optional inputs

outputs

Searches field (which can be output from make-cyc-pfield, or any list of pitches) and returns
all the instances it finds of the pitch class pc (or of each pitch class, if pc is a list of them).

any number of pfield items:
pfield space of pitches list of integers

space of pitches list of integers

pc pitch class or list of them mod-n integer or list of them
field space of pitches list of integers

n modulus of the pc space and
number of equal steps per octave
in the corresponding pitch space

positive integer (12 by default)

list of all the pitches in field that
are congruent mod-n to pc (or list
containing one such list for each
input pc)

list (or list of lists) of integers

! / OMPF12

find-pcset-in-field
inputs

optional inputs

outputs

Searches field (which can be output from make-cyc-pfield, or any list of pitches) and returns
all the instances it finds of the pitch class set pcset (or of each pitch class set, if pcset is a list of
them).

find-bounded-chords-in-field
inputs

outputs

Each of the bounds defines a region of field whose pitches are at least lo and at most hi.
Returns a list of all the pitch sets that can be formed by drawing one distinct pitch from each of
these regions.

Can also process a list of fields: if field is a list of lists of integers, then returns a corresponding list of
pitchsets for each sublist.

pcset pitch class set or list of them list (or list of lists) of mod-n integer
field space of pitches list of integers

n modulus of the pc space and
number of equal steps per octave
in the corresponding pitch space

positive integer (12 by default)

list of all the pitch sets in field
that are pitch-space realizations of
pcset (or list containing one such
list for each input pcset)

list (or list of lists) of lists of
integers

bounds pairs (lo hi) representing registral
bounds

list of pairs of integers

field space of pitches list of integers

list of all the pitch sets in field
composed of pitches within
specified bounds

list of lists of integers

OMPF / !13

filter-chordlist
inputs

optional inputs

outputs

The chordlist parameter is a (nested) list of lists of integers (for pitch sets) or mod-n integers
(for pcsets). The test parameter is any predicate function returning t or nil when applied to a
pitch set or pcset. Filtering works on elements of either type depending on the test parameter
— although most of the make-foo-test modules yield tests for pitch sets only.

The return value filtered-chordlist is a list like chordlist but with certain chords removed.
If mode is set to PASS, which is the default, then the chords for which test returns t will be
passed through to filtered-chordlist and the others removed. If mode is set to REJECT, then
the chords for which test returns t will be removed and the others passed through to
filtered-chordlist.

This function performs as intended only when the input chordlist is a list with a particular
structure S, which if not empty can contain chords (nonempty integer lists) or lists with
structure S, but not a mix of the two.

Examples (each item chord-n is a nonempty list of integers)

• good: ((chord-1 chord-2) (chord-3) () (chord-4 chord-5))

• good: (chord-1 chord-2 chord-3)

• good: ((chord-1 chord-2) (() (chord-3 chord-4) (chord-5)))

• bad: (chord-1 chord-2 nil chord-3)  
list contains a mix of chords and S-structures

• bad: ((chord-1 (chord-2 chord-3)) (chord-4 chord-5))) 
first sublist contains a mix of chords and S-structures

test predicate function that tests a
chord (list of integers) and returns
t or nil

function or subpatch in lambda
mode, or output from one of the
modules named make-foo-test; to
combine multiple tests, use the
and-tests and or-tests functions

chordlist list (possibly nested) of chords list (possibly nested) of integers

mode operating mode of filter menu selection: PASS or REJECT

filtered-
chordlist

list (possibly nested) of chords list (possibly nested) of integers

! / OMPF14
For other filtering tasks, consider the Common Lisp functions remove-if and remove-if-not,
and OpenMusic functions like filter-list.

OMPF / !15

make-bounds-test
inputs

outputs

Returns a predicate, intended for use with filter-chordlist, to test if a pitch set fits entirely
within the closed interval [lo, hi].

make-width-test
inputs

outputs

Returns a predicate, intended for use with filter-chordlist, to test if the registral span of a
pitch set (the interval between its lowest and highest pitches) is less than or equal to width.

make-cardinality-test
inputs

optional inputs

outputs

Returns a predicate, intended for use with filter-chordlist, to test if the number of notes in a
pcset or pitch set is at least lo and at most hi. If a non-nil modulus n is specified, reduces each
chord mod n before computing its cardinality.

lo lowest permissible pitch integer
hi highest permissible pitch integer

test that will return t or nil compiled lexical closure

width maximum permissible interval
between lowest and highest
pitches

integer

test that will return t or nil compiled lexical closure

lo lower bound on cardinality positive integer
hi upper bound on cardinality positive integer

n modulus of pc space integer or nil (defaults to nil)

test that will return t or nil compiled lexical closure

! / OMPF16

make-spacing-test
inputs

outputs

Returns a predicate, intended for use with filter-chordlist, to test if the intervals between
consecutive elements of a pitch set, traversed from bottom to top, are in the ranges determined
by spacing-lists. Each item in spacing-lists is a list of spacing-pairs, which are pairs (lo hi)
specifying the minimum and maximum permissible distances between consecutive pitches.

For a given chord C, testing proceeds as follows:

• The first item in spacing-lists with an appropriate number of spacing-pairs is located.

• The intervals of C are compared to the ranges of these spacing-pairs. If every interval is in
range, then make-spacing-test returns t. Otherwise, the next item in spacing-lists with
an appropriate number of spacing-pairs is located and the comparison step is repeated.

• If the intervals of C are not in the ranges determined by at least one list of spacing-pairs, then
make-spacing-test returns nil.

spacing-lists list of specifications for pitch-set
spacing

each element is a list of spacing-
pairs; each spacing-pair is an integer
pair (lo hi), lo ≤ hi

test that will return t or nil compiled lexical closure

OMPF / !17

make-voicing-test
inputs

optional inputs

outputs

Returns a predicate, intended for use with filter-chordlist, to test if specific interval classes
(undirected mod-n pc intervals) in a chord are voiced according to the criteria specified in
vspec-pairs, which is a list of pairs (ints lim). Each ints is a list of undirected pitch intervals
drawn from a single mod-n interval class — e.g. (11 13) with n at its default value of 12 —,
and the absolute value of the corresponding lim, a positive (negative) number between 0 and 1
(–1), determines a lower (upper) bound on the ratio J:K, where K is the multiplicity of
occurrence of the interval class represented in ints, and J is the combined multiplicity of
occurrence of the undirected pitch intervals listed in ints.

Examples (with n = 12)

• With voicing-pairs = (((10 22) 3/4)), returns a test to see if at least 3/4 of the instances
of interval class 2 in a chord are voiced as pitch intervals 10 or 22.

• With voicing-pairs = (((1) 1/6) ((1) -1/2)), returns a test to see if at least 1/6, but at
most 1/2, of the instances of interval class 1 in a chord are voiced as pitch interval 1.

voicing-pairs list of specifications for pitch-set
voicing

list of pairs; each pair is a list of the
form (ints lim); each ints is a list of
integers; each lim is a number
between –1 and 1

n modulus of the pc space positive integer (12 by default)

test that will return t or nil compiled lexical closure

! / OMPF18

and-tests
inputs

outputs

Takes any number of predicate functions (each returning t or nil) and returns a test that, for a
certain input, will return t if all the predicates return t for the same input, or nil if any of the
predicates return nil.

any number of test items:
test test that will return t or nil compiled lexical closure

test that will return t or nil compiled lexical closure

OMPF / !19

or-tests
inputs

outputs

Takes any number of predicate functions (each returning t or nil) and returns a test that, for a
certain input, will return t if any of the predicates return t for the same input, or nil if all the
predicates return nil.

vector-dotprod
inputs

outputs

The dot-product of the vectors v = (v1 v2 … vn) and w = (w1 w2 … wn) is the number v1w1 +
v2w2 + … + vnwn. Sometimes vector w is called a weighting vector; then v·w is called a weighted sum
of the contents of v.

any number of test items:
test test that will return t or nil compiled lexical closure

test that will return t or nil compiled lexical closure

v vector list of numbers 
(NB: not a lisp vector)

w vector of same order as v list of numbers, equal in length to
the v list

dot product v·w number

! / OMPF20

vector-angle
inputs

outputs

Calculates the geometric angle (in radians) from vector v to vector w positioned at a common
origin.

v vector list of numbers 
(NB: not a lisp vector)

w vector of same order as v list of numbers, equal in length to
the v list

angle from v to w real number in [0, π/2]

OMPF / !21

incl-classrep expression

! / OMPF22

Examples

undirected pc interval, possibly 0;
or aggregation of them

integer in [0, n/2]; or list of them

undirected pitch interval, possibly
0, or range of them; or aggregation
of intervals and/or ranges

(:p a0 a1 …), ai a nonnegative integer or pair (loi hii), 
loi < hii, representing the range [loi, hii]; a single interval
or range takes the same form, and is therefore a list with
head :p and a one-element tail

t pcset class (:t k0 k1 …), ki a mod-n integer

ti pcset class (:ti k0 k1 …), ki a mod-n integer

t pitch set class (:tp k0 k1 …), ki an integer

ti pitch set class (:tip k0 k1 …), ki an integer

4 ic 4

(1 2 6) ics 1, 2, 6

(:p 3) undirected pitch interval 3

(:p 5 (7 11) (13 17)) undirected pitch intervals  
5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17

(:t 0 1 3) pcset {0 1 3} and its transpositions

(:ti 0 1 5) pcset {0 1 5} and its transpositions and inversions

(:tp 0 7 14) pitch set {0 7 14} and its transpositions

(:tip 0 9 16) pitch set {0 9 16} and its transpositions and inversions

OMPF / !23

incl-vec
inputs

optional inputs

outputs

The inclusion vector is a broad generalization of Alan Forte’s interval vector (1973). For a given
list of equivalence classes, the inclusion vector of a chord is a corresponding list indicating
how many members of each equivalence class contain or are contained by chord. The
equivalence classes are determined by the classreps parameter, an expression with special
syntax described elsewhere. The equivalence classes can be particular undirected pc intervals,
undirected pitch intervals, t or ti set classes of pcs, and/or t or ti set classes of pitches; multiple
undirected pc or pitch intervals can also be aggregated and counted together, as explained in
the discussion of incl-classrep syntax.

Depending on how classreps is configured, incl-vec calculations may or may not make sense
when chord is interpreted as a mod-n pcset. No matter how classreps is configured, incl-vec
calculations always make sense when chord is interpreted as a pitch set.

If n = 12 and classreps is a list representing all of the nonzero interval classes — namely  
(1 2 3 4 5 6) — then the inclusion vector is the interval vector whose uses have been
discussed at length in the music-theory literature.

chord chord whose inclusion vector is
sought (or a list of chords)

list of integers (or list of lists of
integers)

classreps list of expressions representing
equivalence classes of pcs or
pitches

list of incl-classrep expressions

n modulus of the pc space positive integer (12 by default)

inclusion vector reporting selected
inclusion features of chord

list of nonnegative integers

! / OMPF24

incl-vec-angle
inputs

optional inputs

outputs

This function calculates inclusion vectors for chord1 and chord2 in terms of the m equivalence
classes identified in classreps. It then situates these vectors at a common origin in m-
dimensional space and computes the angle (in radians) from the chord1 vector to the chord2
vector.

When n = 12 and classreps is (1 2 3 4 5 6), the inclusion vectors are interval vectors, and
the return value is the interval angle proposed as a measure of pcset similarity (with smaller
angles indicating greater similarity) in Damon Scott and Eric J. Isaacson, “The Interval Angle:
A Similarity Measure for Pitch-Class Sets,” Perspectives of New Music 36.2 (Summer 1998): 107–
142.

If chord1 and/or chord2 contains (or is contained by) zero members of all the equivalence
classes specified in classreps, then it will have a zero-magnitude vector and undefined
direction. In this case, a true angle measurement is impossible. To preserve the utility of this
function as a generalized (dis)similarity measure, the following solution is adopted in zero-
magnitude cases: if both vectors have zero magnitude, the angle reported is zero (for
maximum similarity); if one vector has zero magnitude and the other has nonzero magnitude,
the angle reported is π/2 (for maximum dissimilarity). To avoid zero-magnitude vectors and
ensure a result based on true angle measures, include in classreps all possible interval classes
or one of the complete prime-form lists produced by list-t-primeforms or list-ti-
primeforms (using the tag option).

chord1 chord (pcset or pitch set) list of integers
chord2 chord (pcset or pitch set) list of integers
classreps list of expressions representing

equivalence classes of pcs or
pitches

list of incl-classrep expressions

n modulus of the pc space positive integer (12 by default)

angle from the inclusion vector of
chord1 to that of chord2

real number in [0, π/2]

OMPF / !25

prog-classrep expression

! / OMPF26

Examples

prog-vec
inputs

optional inputs

outputs

The progression vector is an application, and in some respects a generalization, of David
Lewin’s interval function (Generalized Music Interval and Transformations, 1987). For a given list
of directed intervals, as specified in classreps, the progression vector of a chord-pair (from-
chord to-chord) is a corresponding list indicating how many instances of each interval can be
formed from a member of from-chord to a member of to-chord.

Depending on how classreps is configured, prog-vec calculations may or may not make sense
when from-chord and to-chord are interpreted as mod-n pcsets. No matter how classreps is

directed pc interval, possibly 0; or
aggregation of them

mod-n integer; or list of them

directed pitch interval or range of
them; or aggregation of intervals
and/or ranges

(:p a0 a1 …), ai an integer or pair of them (cf notation
for undirected pitch intervals in incl-classrep syntax)

11 directed pc interval 11

(8 9) directed pc intervals 8 and 9

(:p 18) directed pitch interval 18

(:p (-2 2) 6) directed pitch intervals –2, 1, 0, 1, 2, 6

from-chord chord-of-departure for the
progression whose vector is sought

list of integers

to-chord chord-of-arrival for the progression
whose vector is sought

list of integers

classreps list of expressions representing
directed pc or pitch intervals

list of prog-classrep expressions

n modulus of the pc space positive integer (12 by default)

progression vector for the pair
(from-chord to-chord)

list of nonnegative integers

OMPF / !27
configured, prog-vec calculations always make sense when these chords are intepreted as
pitch sets.

! / OMPF28

prog-vec-angle
inputs

optional inputs

outputs

This function calculates progression vectors for the pairs (from1 to1) and (from2 to2) in
terms of the m intervals identified in classreps. It then situates these vectors at a common
origin in m-dimensional space and computes the angle (in radians) from the (from1 to1)
vector to the (from2 to2) vector.

When either chord pair involves zero instances of all the intervals specified in classreps, then it
will have a zero-magnitude vector and undefined direction. In this case, a true angle
measurement is impossible. To preserve the utility of this function as a generalized
(dis)similarity measure, the following solution is adopted in zero-magnitude cases: if both
vectors have zero magnitude, the angle reported is zero (for maximum similarity); if one vector
has zero magnitude and the other has nonzero magnitude, the angle reported is π/2 (for
maximum dissimilarity). To avoid zero-magnitude vectors and ensure a result based on true
angle measures, include in classreps all possible directed pc intervals 0, 1, …, n.

from1 chord (pcset or pitch set) list of integers
to1 chord (pcset or pitch set) list of integers
from2 chord (pcset or pitch set) list of integers
to2 chord (pcset or pitch set) list of integers
classreps list of expressions representing

directed pc or pitch intervals
list of prog-classrep expressions

n modulus of the pc space integer (12 by default)

angle from the progression vector
of (from1 to1) to that of 
(from2 to2)

real number in [o, π]

OMPF / !29

sort+
inputs

optional inputs

outputs

Resembles the sort. function in the OpenMusic kernel, with the addition of a second output,
equalities, which reports how many elements score identically when they (or their key
values) are subjected to test.

Example

Suppose test = #'< and key = #'length, with elements and return values as shown:

Here the items to be sorted are lists such as (a b), they are sorted based on their lengths, and
the sort order is from shortest to longest. The equalities list indicates that three elements are
tied for shortest, three more elements are tied for next shortest, and one element is longest. The
actual result in sorted-elements may differ from what is shown in this example, because
nothing is guaranteed about the order, relative to one another, of items with equal values (or
equal key values). For instance, sorted-elements could also begin with (c d) or (e f) in this
example.

elements items to sort list

test how to compare items for sorting binary function name or function
object (#'< by default)

key operation to perform on items
before comparison

function name or object  
(or nil by default)

sorted-elements result of sorting list
equalities indicates runs of equal value (or

key-value) in sorted-elements
list of positive integers

elements: ((j k l m) (a b) (a b c) (c d) (e f) (d e f) (g h i))

sorted-elements: ((a b) (c d) (e f) (a b c) (d e f) (g h i) (j k l m))

equalities: (3 3 1)

! / OMPF30

sort+select
inputs

optional inputs

outputs

Sorts elements as they would be sorted by the sort. function in the OpenMusic kernel. Then
selects the n items from the top of the sorted list. If certain elements (or their key values) are
equal according to test, and n is such that some but not all of these elements should be
selected, then this part of the selection is made randomly.

Example

Suppose test = #'<, key = #'length, and n = 4, with elements as shown:

Here the three shortest sublists — (a b), (c d), (e f) — will be selected; and the fourth and
final part of the selection will be selected at random from (a b c), (d e f), (g h i).

elements items from which to select list
n how items to select integer

test how to compare items for sorting binary function name or function
object (#'< by default)

key operation to perform on items
before comparison

function name or object  
(or nil by default)

n elements selected from top of
sorted list

list

((j k l m) (a b) (a b c) (c d) (e f) (d e f) (g h i))

OMPF / !31

sort-key_incl-vec-sum
inputs

optional inputs

outputs

Returns a function that assigns a number to a chord according to a weighted sum of the
positions in the chord’s inclusion vector, calculated for the equivalence classes represented in
classreps. The function returned by sort-key_incl-vec-sum is intended for use as a key
function with sort+.

In one straightforward application, n = 12 and classreps is the list (1 2 3 4 5 6), so the
inclusion vector is the familiar interval vector. With weightings that reflect the potential
dissonance of each interval class, this application allows a list of chords to be sorted roughly in
order of increasing or decreasing dissonance.

classreps list of expressions representing
equivalence classes of pcs or
pitches

list of incl-classrep expressions

weightlist weighting applied to inclusion
vector

list of numbers, one for each
classreps item

n modulus of the pc space integer (12 by default)

test that will return a number compiled lexical closure

! / OMPF32

sort-key_incl-vec-angle
inputs

optional inputs

outputs

Returns a function that assigns a number to a chord C based on the angle measured from the
inclusion vector of refchord to the inclusion vector of C. The function returned by sort-
key_incl-vec-angle is intended for use as a key function with sort+.

Because the angle measure between the inclusion vectors of two chords is often plausibly
interpreted as a measure of their similarity (with smaller angles indicating greater similarity),
this function allows a list of chords to be sorted in order of increasing or decreasing similarity
to refchord.

classreps list of expressions representing
equivalence classes of pcs or
pitches

list of incl-classrep expressions

refchord chord whose inclusion vector
provides a reference from which
angles are measured

list of integers

n modulus of the pc space integer (12 by default)

test that will return a number compiled lexical closure

OMPF / !33

sort-key_prog-vec-sum
inputs

optional inputs

outputs

Returns a function that assigns a number to a chord C according to a weighted sum of the
positions in the progression vector of the pair (from-chord C), calculated for the intervals
represented in classreps. The function returned by sort-key_prog-vec-sum is intended for use
as a key function with sort+.

classreps list of expressions representing
directed pc or pitch intervals

list of prog-classrep expressions

from-chord chord (pcset or pitch set) list of integers
weightlist weighting applied to the

progression vector
list of numbers, one for each
classreps item

n modulus of the pc space integer (12 by default)

test that will return a number compiled lexical closure

! / OMPF34

sort-key_prog-vec-angle
inputs

optional inputs

outputs

Returns a function that assigns a number to a chord C based on the angle measured from the
progression vector of the pair (ref-from ref-to) to the inclusion vector of the pair (from-
chord C). The function returned by sort-key_prog-vec-angle is intended for use as a key
function with sort+.

Because the angle measure between the progression vectors of two chord pairs is often
plausibly interpreted as a measure of their similarity (with smaller angles indicating greater
similarity), this function allows a list of chords to be sorted in order of increasing or decreasing
similarity of the pairs they complete to the reference pair (ref-from ref-to).

sort-key_width
outputs

Returns a function assigns a number to a chord representing the registral width of that chord
(the distance between its lowest and highest pitches).

classreps list of expressions representing
directed pc or pitch intervals

list of prog-classrep expressions

from-chord chord (pcset or pitch set) list of integers
ref-from chord-of-departure for the pair

whose progression vector provides
reference from which angles are
measured

list of integers

ref-to chord-of-arrival for the pair whose
progression vector provides
reference from which angles are
measured

list of integers

n modulus of the pc space integer (12 by default)

test that will return a number compiled lexical closure

test that will return a number compiled lexical closure

OMPF / !35

mc->p
inputs

optional inputs

outputs

Converts from midicent values to pitch-space values.

pitch space: middle-C = 0, minimal step (1/n octaves) = 1

midicents: middle-C = 6000, semitone = 100 (cent = 1)

p->mc
inputs

optional inputs

outputs

Converts from pitch-space values to midicent values.

pitch space: middle-C = 0, minimal step (1/n octaves) = 1

midicents: middle-C = 6000, semitone = 100 (cent = 1)

mc midicents value or list of them integer or list of integers

n number of equal steps per octave integer (12 by default)

p pitch-space value or list of them integer or list of integers

p pitch-space value or list of them integer or list of integers

n number of equal steps per octave integer (12 by default)

mc midicents value or list of them integer or list of integers

! / OMPF36

p->pc
inputs

optional inputs

outputs

Converts from pitch to pitch class.

parse-incl-classreps
inputs

outputs

Prints (to the Listener window) a description of each item in the list incl-classreps, to assist
in the construction of parameters that use the incl-classrep format.

parse-prog-classreps
inputs

outputs

Prints (to the Listener window) a description of each item in the list prog-classreps, to assist
in the construction of parameters that use the prog-classrep format.

p pitch-space value or list of them integer or list of integers

n number of equal steps per octave integer (12 by default)

pc pc-space value or list of them mod-n integer or list of them

incl-classreps list of expressions representing
equivalence classes of pcs or
pitches

list of incl-classrep expressions

incl-classreps the input is passed through
unchanged

prog-classreps list of expressions representing
directed pc or pitch intervals

list of prog-classrep expressions

prog-classreps the input is passed through
unchanged

OMPF / !37

flatten2chordlist
inputs

outputs

Given a (possibly nested) list of chords, removes the nested structure and returns the same
chords in a flat list. A nested list of chord must be processed with this function before it can be
sorted.

chordtree list (possibly nested) of chords list (possibly nested) of lists of
integers

chordlist flat list of chords list in which each element is a flat
list of integers

