University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI B !!!!
NI J

Centre for Learning Excellence

Teaching Rule-Based Algorithmic Composition: The PWGL Library
Cluster Rules

Torsten Anders, Department of Media Arts and Production, University of
Bedfordshire

Contact: torsten.anders@beds.ac.uk

Abstract

This paper presents software suitable for undergraduate students to implement computer programs
that compose music. The software offers a low floor (students easily get started) but also a high ceiling
(complex compositional theories can be modelled). Our students are particularly interested in tonal
music: such aesthetic preferences are supported, without stylistically restricting users of the software.

We use a rule-based approach (constraint programming) to allow for great flexibility. Our software
Cluster Rules implements a collection of compositional rules on rhythm, harmony, melody, and
counterpoint for the new music constraint system Cluster Engine by Orjan Sandred.

The software offers a low floor by observing several guidelines. The programming environment uses
visual programming (Cluster Rules and Cluster Engine extend the algorithmic composition system
PWGL). Further, music theory definitions follow a template, so students can learn from examples how to
create their own definitions. Finally, students are offered a collection of predefined rules, which they
can freely combine in their own definitions.

Music Technology students, including students without any prior computer programming experience,
have successfully used the software. Students used the musical results of their computer programs to
create original compositions.

The software is also interesting for postgraduate students, composers and researchers. Complex
polyphonic constraint problems are supported (high ceiling). Users can freely define their own rules and
combine them with predefined rules. Also, Cluster Engine’s efficient search algorithm makes advanced
problems solvable in practice.

Keywords: research-based learning; practice-led research; algorithmic composition; constraint
programming; visual programming; PWGL

Introduction

This paper presents research directed at supporting students in learning algorithmic composition. In
algorithmic composition (Nierhaus, 2009), musicians develop their own software that generates music,
which can lead to new musical ideas, and to compositional techniques that are difficult to realise ‘by
hand’. Studying algorithmic composition is useful for Music Technology students, because it brings
important areas of music technology together. Students strengthen artistic skills in composition, as well
as technical skills in computer programming. Music composition is part of many Music Technology and
similar courses in the UK, and so is computing (Boehm, 2007) — in particular software development using
visual programming languages. The key is that students reflect composition techniques and music
theory in order to computationally model them.

For this project, students are learning in research mode (research-based and research-tutored learning
(Healey & Jenkins, 2009)) by conducting practice-led research (Barrett & Bolt, 2010) in an established
area with a long history. Learning from first-hand research experience is highly valuable for all students
(Healey & Jenkins 2009).

We want to enable students with little or no computer programming experience to computationally
model music theories. It should be possible for them to model complex music theories that at the same
time restrict the rhythmic, melodic, harmonic, and motivic structure of music. However, such complex
theories should be reasonably easy to implement.

We propose realising this goal with a collection of ready-made compositional rules for a visual rule-
based algorithmic composition system, and a prototype has been developed for this project. This
collection contains various rules restricting the rhythm, melody and harmony. Students model their own
music theories and that way shape their music by freely combining rules, and by customising the effect

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI B !!!!
NI J

Centre for Learning Excellence

of these rules with rule parameters. The prototype rule collection is called Cluster Rules, which
complements the music constraint system Cluster Engine, a successor of PWMC (Sandred, 2010); all
these systems are libraries of the visual programming system PWGL (Laurson et al. 2009)."

The present research is conducted at a UK university with a widening participation (Hinton-Smith, 2012)
agenda. It aims at presenting algorithmic composition in a way that is attractive to Music Technology
students at such a university.

Motivation and Context

Teaching Tonal Composition with Algorithmic Composition Tools

For centuries, composers have aimed at balancing musical ideas and expression with a coherent
organisation of musical form. Algorithmic composition (score synthesis) offers an alternative approach
to that end, as it allows its practitioners to work on a higher level by focussing on a general development
or process instead of composing all individual notes. Algorithmic composition also allows composers to
surprise themselves; and computational models of music composition and theory can lead to a better
understanding of how music ‘works’.

Composition should be taught in a way that is engaging for students and which taps into their intrinsic
motivation. This is especially the case at a university with a high percentage of non-traditional students.
Students in our course typically want to compose music largely in a mainstream musical idiom, or the
idiom of certain sub- and countercultures. For example, virtually all of our students aim for tonal music,
and most often they want a clear rhythmic structure, as prevails in most popular music styles. Students
are less interested in ‘experimental music’, e.g., traditions such as electroacoustic music (Landy, 2007) —
even after they have been introduced in their course to various musical traditions including 20th/21st
century music languages. Their musical interests are likely a result of both their musical upbringing, as
well as their clear interest in the vocational applicability of knowledge and skills learned in their course.

The writing of tonal music is traditionally trained by studying music theory subjects such as harmony —
the organisation of chords and chord progressions (Schoenberg, 1983); and counterpoint — how multiple
parts can accompany each other (Piston, 1947); complemented by composition practice (Schoenberg,
1967; Russo et al. 1988; Cunningham, 2007).

However, this traditional approach is not well suited for music technology students: it is intended for
several years of intensive compositional training, and is centred on music notation using pen and paper.
Music technology students do not have that amount of time to study composition, many struggle with
music notation, and they are not keen on using pen and paper for writing music — they prefer software.
This traditional approach has therefore been adapted for music technology students: Hewitt addresses
the users of modern Digital Audio Workstations when introducing music theory subjects such as
harmony (Hewitt, 2011), and compositional tasks such as writing bass lines and melodies (Hewitt, 2009).

The present project tries a different approach to teaching composition, which can complement the
above by Hewitt. As our students prefer using software when composing, why not try to use software
for the compositional process itself, that is, use algorithmic composition techniques?

This research project proposes an algorithmic composition platform suitable for our undergraduate
students. In particular, this platform also allows for modelling tonal music and clear rhythmic structures.

Rule-Based Programming (Music Constraint Programming)

For the educational purposes of this project, we wanted an algorithmic composition technique that
supports tonal music composition, and that allows our students great flexibility in shaping their
generated music. It should also be reasonably easy to learn, but that aspect is discussed later in more
detail.

A wide range of techniques have been proposed (Nierhaus, 2009), including various methods that stem
from artificial intelligence (Ferndndez & Vico, 2013). Rule-based systems have often been used for
modelling tonal music, and the flexibility of this approach for music composition has been demonstrated

The composition environment PWGL and the libraries presented in this paper are all freely available online. PWGL:
http://www?2.siba.fi/PWGL/; Cluster Engine: http://sandred.com/Downloads.html; Cluster Rules
https://github.com/tanders/cluster-rules.

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI B !!!!
NI J

Centre for Learning Excellence

by the wide range of existing applications (Anders & Miranda, 2011). We therefore decided for a rule-
based approach. For centuries, musicians have used compositional rules for describing musical
characteristics (e.g., the anonymous treatise Musica enchiriadis already used rules in the 9th century for
describing the composition of an organum, an early polyphonic form). So, learning to think in terms of
rules is useful for students beyond the field of algorithmic composition.

Generating a score from a rule-based description of the desired rhythm, harmony and so forth can be
efficiently implemented by constraint programming (Apt, 2003). In this field, a music score contains
variables (unknowns, as in algebra), e.g., note pitches and durations can be variables. Users restrict such
variables by applying rules (constraints) to them. Such rules can implement traditional music theory
rules (e.g., rules of harmony), or experimental compositional concepts, including concepts defined by
users. In order to limit the size of the search space, variables are defined with a finite domain — possible
values they can take in a solution (e.g., possible rhythmic values for note durations). A constraint solver
then searches for one or more solutions that fulfil all rules applied.

Constraint programming has already been used for decades for modelling music theory and
composition. Anders and Miranda (2011) provide an extensive survey of this research area, and
compare in detail several music constraint systems that allow users to model their own music theories.
Another review focuses on modelling harmony (Pachet & Roy, 2001). Anders (2016) surveys several
compositions composed with the help of various music constraint programming systems.

Visual Programming

For this project we looked for a music constraint system that makes it easy to get started (low floor) but
also allows for highly complex music theory definitions (high ceiling; Resnick et al. 2009). Users of
algorithmic composition systems (including music constrain systems) develop their own computer
programs, but learning to program is challenging (Jenkins, 2002). A visual programming language lowers
the floor, so such a language was preferable.

Visual languages are easier to learn for new users without programming experience because users need
to learn less syntax (e.g., in systems like PWGL the main syntax element is connecting boxes with patch
chords, see figures below for examples) and therefore fewer errors can occur. Also, users can select
boxes from menus — they do not need to remember many keywords, functions, names, etc. to get
started. Such ease of use contributes greatly to the popularity of visual programming systems for music
and sound.

Nevertheless, a main challenge in programming is the actual problem solving (Michaelson, 2015), and
this aspect cannot really be simplified with visual programming or any other programming paradigm for
that matter (van Roy & Haridi, 2004). We tried to reduce this challenge for students by providing them
with templates for music theory definitions where they could then insert and remove ready-made rules
of the Cluster Rules library. The main template is shown below in Figure 1, and later examples
demonstrate how this template can be extended.

Cluster Engine

For this project we chose the PWGL library Cluster Engine by Orjan Sandred as the foundation, because
it is designed for composing polyphonic music, and users can freely constrain both pitches and rhythm.
Also, users can define their own rules visually.” Other visual music constraint programming systems have
been developed before, but these systems are far more restricted (Anders & Miranda, 2011). Cluster
Engine is therefore presented in some detail in this section.

Cluster Engine provides a constraint solver designed specifically for solving complex polyphonic music
definitions. The library is similar in its functionality to the earlier system PWMC (Sandred, 2010) by the
same author. However, Cluster Engine solves complex polyphonic problems far more efficiently than
PWMC did, in particular problems where both the temporal and pitch structure are constrained. Such
improved efficiency makes many more advanced problems solvable in practice.

A simple example (Figure 1) explains common boxes of the library that are used in other examples
below. The box clusterengine is the heart of the library: it represents the constraint solver, and it

2 . . .
Advanced users can program rules more concisely in the textual language Common Lisp, and Cluster Rules was

also defined this way.

Journal of Pedagogic Development LE !!!!
“ ' University of Volume 6, Issue 1 (:
Bedfordshire

also encapsulates the internal music representation of the library. This box expects the following inputs
(among others):

Centre for Learning Excellence

° The rhythm domain sets possible note durations for a specific voice. In the example, quarter
notes (crotchets) and eighth notes (quavers) are permitted, encoded by the fractions 1/4 and 1/8.
. The pitch domain sets possible pitches for a specific voice. The figures in the example (60, 62, ...)

represent MIDI note numbers (Rothstein, 1995), i.e., certain white keys on a music keyboard (C4, D4,
E4, ..).

o clusterengine expects an arbitrary number of rules. The box rules->cluster can be
extended to an arbitrary number of inputs, see Figure 3.

The pitch and duration domains allow for pre-composed sequences (motifs). Such sequences are
enclosed in parentheses. This is also the reason why in Figure 1 all individual values in the pitch and the
duration domain are enclosed in parentheses.

For more voices clusterengine can be extended (up to 10 voices at maximum). clusterengine
typically outputs the solution score (in this case following the rhythm and pitch domains, but no
additional rules). A wide range of music theories can be defined by extending this template basically by
adding rules.

value-box
((60) (62) (64) (65) (67) (69) (71) (72)) ”

clusterengine .
rules->cluster Score-Editor

10 [t |Q
0 - | [90 4 =90
¥ :score-object) I N
Rules (4 4)) h————
connected /4) (1/8))

here later

itches rtms/times

pitch domain
(set in connected
value box above)

% '

Figure 1: Dummy example demonstrating common boxes of Cluster Engine, see text for details

Cluster Engine predefines only few rules, but users can define their own rules. The library provides a rich
set of boxes that control which score contexts (which sets of pitch, duration, and/or time signature
variables) are constrained by a user-defined rule (e.g., consecutive pitches in a voice, or simultaneous
pitches across multiple voices). The expressive power of these rule applicators (called access boxes by
Sandred, 2010) is one of the major strengths of this system.

Cluster Rules

This project aimed at helping students to start doing their own practice-based algorithmic composition
research. Remember that we wanted to empower students with little programming experience to
computationally model their own music theories, including complex theories that restrict at the same
time the rhythmic, melodic, and harmonic structure of music.

For this purpose we provided students with a collection of predefined musical rules, which they could
freely combine. The PWGL library Cluster Rules predefines rules for the library Cluster Engine, and that
way greatly simplifies getting started to use Cluster Engine (low floor).

Nevertheless, Cluster Rules does not restrict the flexibility of Cluster Engine (high ceiling). More
experienced users can freely mix the predefined rules with their own rules. Also, all advanced features
of Cluster Engine like its motif domains are supported. The rest of this section gives an overview of the
range of rules provided by Cluster Rules.

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI B !!!!
NI J

Centre for Learning Excellence

Parameterised Rules

In the simplest case, ready-made compositional rules are just selected and applied by users. However,
such an approach would either restrict greatly the range of music theories that can be modelled, or
alternatively require a very large number of predefined rules. Instead, users of Cluster Rules can
customise the effect of each rule with various rule parameters.

Figure 2 (a) shows a rule example with three parameters. If users click on a rule name (here, no-
repetition) then PWGL shows the parameter names (Figure 2 (b)), which are documented in the
reference for each rule. This particular melodic rule disallows the repetition of notes in the given voices
(here (O 1), meaning the first and second voice counting from the top stave) within a window of a
given number of notes (here 3, i.e., no repetitions among three consecutive notes are allowed). At the
third parameter users can select by a menu what note attributes to consider (e.g., disallowing
repetitions of actual pitches or pitch classes, i.e., notes in different octaves with the same name).

no-repetition no-repetition
1) |3 |
(@ 7 pitches (b)

Figure 2: (a) an example rule with three parameters of different types: a number, a sequence of numbers
(enclosed in parentheses), and a value selected by a menu. (b) The parameter names are shown when the user
clicks on the rule name.

For simplicity, parameters that do not expect a number or a list of numbers can usually be selected from
a menu. Again for simplicity, meaningful rule parameter defaults are chosen such that rules can usually
be used directly without customising their parameters first.

To further simplify the interface of rules, some parameters are optional, and only revealed on request.
For example, by default rules implement strict constraints, but an optional argument for almost all rules
allows to turn them into a heuristic rule that expresses a mere preference (soft constraint) (Sandred,
2010).

Melodic Rules

Local Contexts Several rules control melodic motion between consecutive notes. Some rules enforce
melodic lines to follow conventions of tonal music, which addresses aesthetic student preferences. Such
rules restrict, e.g., the maximum melodic interval, or the set of melodic intervals allowed. Other rules
require skips to be resolved by a step in the opposite direction. These rules are inspired by conventional
counterpoint, e.g., rules by Jeppesen (1939).

Further rules are less conventional, but offer interesting ways to shape results. For example, it is
possible to enforce a minimum melodic interval, or how many consecutive intervals can be ascending or
descending.

Again, all these rules are parameterised. For example, users can specify the minimum skip size that
should be resolved, and the maximum interval allowed as resolution. Tweaking rule parameters can
enforce more or less conventional results.

Profile Rules: Large-Scale Contexts Profile rules (Schilingi, 2009) allow users to outline how a melody
should roughly develop over time. Figure 3 shows a simple example. The melodic curve is constrained by
a profile — specified graphically as break-point function by a PWGL 2D-Editor — to move first up and then
down. This profile is given to the actual profile rule (Fol low-profi le-hr). Rule-related boxes have
usually a darker border for clarity in this paper.

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CLE !!!l

Centre for Learning Excellence

restrict-consecutive-directions
3 [:either

scale->pitchdomain
(02457911) 56

2D-Editor

Profile given

to profile rule 80
r
rules->cluster
argi
— rules clusterengine
objects adtive \\ 10 | t I ()
follow-profile-hr » rules | 90
¥ :score-object
((4 4))

((1/4)) | pitchdomje—
‘y,

Score-Editor MY e
J =90
1
f) I |
b M T i T I I ‘ ! - T j
.J o L J - LJ &
score pitches rims/times E

Figure 3: Patch constraining a melody to follow a pitch profile, see text for details

The domain of note durations of the only voice here is fixed to 1/4 (only crotchets are allowed). The
pitch domain is specified with the convenience box scale->pitchdomain, which generates a
domain specification from a list of pitch classes (here the C-major scale) and MIDI note numbers for the
lower and upper boundary.

Profile rules are heuristic rules. The resulting music tries to follows the profile closely, but if that causes
conflicts with other rules then the resulting music deviates from the profile as necessary. In the
example, a second rule is applied as well: only three consecutive notes can progress in the same
direction (restrict-consecutive-directions). The resulting melody ‘wraps around’ the given
profile.

Rhythm Rules

Cluster Rules predefines a variety of rules that restrict the rhythm. Traditionally, rhythm has been
somewhat neglected by music theory, but controlling the rhythm has great impact on the musical result.
Therefore, a number of predefined rules in this category have no equivalent in traditional music theory.

The rhythmic complexity can be restricted with several rules, answering student preferences. For
example, some rules control syncopations over beats or bar lines. Other rules restrict the position of
tuplet notes to more simple cases.

Some higher-level rules clarify the perceived rhythmic structure. A rule proposed by Sandred (2003)
enforces an alignment between simultaneous parts that could be called quasi-homophony, or a
rhythmic hierarchy. Figure 4 shows an example, where all the rhythmic onsets of the upper voice are
shared by the lower voice. However, the lower voice can have additional note onsets in between (e.g.,
the penultimate note in the first bar). The shown rhythmic solution is syncopated, but the rule enforces
both voices to agree on this syncopation.

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CLE !!!l

Centre for Learning Excellence

Score-Editor

r-rhythm-hierarchy clusterengine J—9O
(O1)|' :dur->dur| 10 [t |0 -
o}
rules 90
text-box\—/':score-object '\3 %)(JI x} x})i\Ji {Ji . ! : {Ji ! x} :
(1/2) (1/4) (1/8) | | (4 4)) T)29
X R rhythmdoml 0] -
» rhythmdom{ () H .
Y 24— +—T —T T] o Y
o xR X X% ’ —x—= R

score pitches rtms/times

Figure 4: Quasi-homophonic texture enforced by a rhythmic rule

Other rules control the position of accented notes in the music (Anders, 2014). For example, longer
notes following rather short notes are often perceived as carrying an accent. Some rules control the
metric position of such durational accents (Lester, 1986).

Rules on Simultaneous Pitches

As mentioned above, our students want to control the harmony of their music. In general, harmony can
be controlled by restricting the intervals between simultaneous pitches, which is basically the approach
of Renaissance music (Jeppesen, 1939). Alternatively, music can be based on an underlying harmony
(e.g., represented by chord symbols), which is the common approach for tonal music since the Baroque
(Rameau, 1984), including today’s popular music. Cluster Rules supports both approaches with
predefined rules.

Constraining Harmonic Intervals A number of rules restrict intervals between simultaneous pitches (or
pitch classes). Users can control which intervals are allowed or forbidden between certain voices. A
classical rule restricts the interval of a fourth between the bass and any higher voice, effectively
restricting six-four chords. Other rules restrict the maximum or minimum size of harmonic intervals (e.g.
certain voices should not be too far apart from each other), or the number of different simultaneous
pitch classes (e.g. it is possible to require always at least three different pitch classes for a full sound).

Constraining the Harmony Several rules control how the music follows an underlying harmony. The
harmony is represented by an extra voice with chords (and possibly even a further voice for the
underlying scale to represent how scales change in modulations). That way, the harmony itself can be
constrained simply like actual notes. For example, a rule can require common pitches between
consecutive chords (Schoenberg, 1983). When exporting, such analysis stave can be deleted, so that
only the actual music is left.

In Figure 5 the music is constrained to follow a simple C-major cadence, shown in the second stave. For
simplicity, these chords are defined manually: the pitch domain of the second voice is a chord
progression specified in a text box.

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CLE !!!l

Centre for Learning Excellence

prefer-intewa|-hr I'ESO|VE-SkipS sca|e->pitchd0main text-box
0 (02457911)] 56 (((60 64 67)
¥ < 80 60 62 65 69
-mel-interyal-one-voice = 62 65 67 71
0 |7 :norm|” :norm 60 64 67)))

harmony
definition

[= 1/4

2

¥ ‘larger-than | 3 :
. ; rules->cluster .
stepwise-nqn-chord-tone- 1 clusterengine
» arg
'2 "D P "LJif]"-‘: 20 | t | 0
:all : | e85 R\ —
a . exclud I~ rules / ’rL.._,v | 90
A rules :SCOVG'ObJeCt
no-two-consecu s | / ((4 4))
[0 | beats | S Tues 1V ((1/4) (1/8)| pitchadet-
..k—/’/“ rules ((1/1)) [pitchdde
Score-Editor 7 P—
. =9

|
T
T

)
.
M.

i

|

[

1
n F A -
RS 1 S====
in result
o
S= 8 & 8

score pitches rims/times

Figure 5: Patch constraining a melody to follow an underlying harmony (C-major cadence)

This patch is slightly more complex than the previous examples: there are seven rules applied in total.
The rule boxes are arranged to use rather little room, and not in the order in which they are presented
in this text.

Two rules restrict the relation between the underlying harmony (second stave) and the melody (first
stave) in a traditional way. The rule only-chord-pcs restricts all notes starting on a beat (second
rule parameter) to a chord tone, but the eighth notes between beats can be non-harmonic tones.
Nevertheless, stepwise-non-chord-tone-resolution constrains these tones to be reached
and left by an interval no greater than 2 semitones (first rule parameter), i.e. a step, which is a standard
dissonance treatment.

Some conventional melodic rules further shape the melody. The heuristic rule prefer-interval-
hr expresses that steps (second parameter: interval size 2) are preferred; resolve-skips constrains
skips exceeding a tritone (interval size 6) to be resolved by a step (maximal size 2) in the opposite
direction; no-repetition disallows pitch repetitions within 3 tones.

An unusual rule adds melodic interest: r-mel-interval-one-voice requires all quarter notes to
be left by an interval larger than 3, i.e. a skip. Finally, a rhythmic rule simplifies the result: no-two-
consecutive-syncopations forbids syncopations across beats (second parameter).

Note that in Cluster Rules the harmony is not restricted to chords and scales from common practice. Any
pitch set can be used as a chord or scale, including microtonal pitches (specified as ‘MIDI-floats’).

Voice-Leading Constraints
Cluster Rules also predefines some common voice-leading constraints. For example, users can prohibit
open or hidden parallels, and can restrict voice crossing.

Evaluation

Usage

Cluster Rules has been introduced at a UK university to level 6 (3rd year) undergraduate students: over a
single term, five students practised algorithmic composition in an optional unit (module). All students
had composed before during their studies. However, many students had little music theory background,

10

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI“E !!!!

Centre for Learning Excellence

and struggled with music notation. Students could therefore use ‘piano roll notation’ instead (see Figure
6), supported by the PWGL 2D Editor.

e 0o Score->2D-Editor
Score-Editor
1 r 290
) M !
= : . R e S e = =
e T = — = =
‘90
A i
o B e
] = &7 e =
a7 7 v

2D-Editor SCOIE pitches rims/iimes

|
L |
L I_[_; |]

- [I

12 ohjects active

Figure 6: A score of two parts automatically translated into ‘piano roll notation’, where these parts are
superimposed

Two students came from a vocational course (two years foundation degree). They did not have any
programming experience, and also did little academic work in general before. The other students had
used other music programming systems before, namely Pure Data (Kreidler, 2009) and SuperCollider
(Wilson et al., 2011). Nevertheless, no student had used PWGL.

Students were introduced to a number of classical algorithmic composition techniques in the unit. For
an assessment, students were asked to program an algorithmic composition application with PWGL
using a technique of their choice, and later they composed pieces with their patches.

All students chose using Cluster Rules and Cluster Engine (one student combined it with another
technique — using the result as a pitch profile rule). This unanimous choice for a rule-based approach
was contrary to the tutor’s initial anticipation. The reasons are possibly aesthetic preferences. In
particular, the underlying harmony is more easily controllable with a rule-based approach. Anyway, such
choice indicates that the combination of Cluster Rules and Cluster Engine is suitable for undergraduate
students — even for students without any prior programming experience.

Discussion

As anticipated and therefore supported by the design of Cluster Rules, all students wanted to program a
patch that controlled the underlying harmony of the resulting music. The unit actually encouraged them
by musical examples (e.g., Xenakis and Murail) to go beyond traditional tonal harmony, but that had
little observable impact on their compositional intentions.

All students successfully constrained the underlying harmony using Cluster Rules (though some needed
more support than others). Nevertheless, the complexity and the character of the harmony of the
student patches clearly differed. For example, one student played with a simple yet effective
unconventional chord progression, where only a single pitch class changed between consecutive chords
(A, CEb > A C E-A, C F). Another student created an interface for selecting a scale and a key, and
used that interface for composing music that progressed through a variety of scales in various keys.

Students were usually happy (and said so) if the resulting music merely played the harmony tones in
figurations, even though Cluster Rules supports more complex musical situations, e.g., control of non-
harmonic tones (e.g., passing tones).

11

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI B !!!!
NI J

Centre for Learning Excellence

Many students struggled to differentiate between an underlying harmony as an analytical concept, and
actual chords played, such as in an accompaniment. As previously discussed (p. 9), Cluster Rules
represents analytical harmonic information simply as chords in an extra voice. Students were presented
example patches where this analysis voice was muted,3 but when explaining this concept we un-muted
the analysis voice. Interestingly, no student later considered to mute such analytical information again,
and many students did not even remove this additional homophonic ‘accompaniment layer’ when later
manually revising their compositions using music notation software (Sibelius), or a digital audio
workstation (Logic).

In future, Cluster Rules and Cluster Engine could be adapted to instead represent harmonic information
differently (e.g., notated by chord symbols). Nevertheless, the flexibility of the current representation
would be nice to keep. For example, constraining harmonic relations between chords would be much
more difficult in a representation based on chord symbols. We will consider other ways to mark voices
as analytical information.

Cluster Rules and Cluster Engine make it easy for students to start defining their own music theories
(low floor), but these libraries also allow for highly complex definitions (high ceiling). We got all students
started, but students used only a small subset of the available functionality. For example, few students
controlled the rhythm beyond specifying duration domains for their voices. Also, students used only a
small set of rules, usually those demonstrated and discussed in example patches in class. Most students
did not explore further rules on their own, even though documentation for each rule is easily available
from within the system. It might be that students lacked confidence to go beyond the material already
discussed in class. Moore (2014) found that the confidence of music technology students increased in
group work, which we should also explore in future.

Instead, we practised reading the reference documentation of rules; Figure 7 shows an example.
Students struggled to comprehend the somewhat formal language and conciseness of such a reference
— to the surprise of the tutor, revealing an expert blind spot (Ambrose et al., 2010). We discussed the
sentence that summarised the rule resolve-skip for a while, but only after students were shown
musical examples and a visualisation of the rule (drawn ad hoc at the white board) did they signal
understanding.

RESOLVE-SKIPS (SKIP-SI1ZE RESOLUTION-SIZE REPETITION?)

Resolve any skip larger than skip-size by an interval in the
opposite direction.

Args:

skip-size: The minimum interval size (in semitones) that
triggers this rule.

resolution-size: The maximum interval size that is allowed as a
resolution.

repetition?: Whether or not tone repetitions are allowed as
resolution.

Figure 7: Documentation of a rule (excerpt) that we practised in class

Future versions of Cluster Rules should therefore simplify the exploration of the system for the benefit
of undergraduates. For example, it would be highly useful to complement the comprehensive textual
reference documentation with more example patches, which demonstrate the various rules. The default
parameters of some rules should be revised to make it easier to start using them. Further, unifying the
order of rule parameters would help students understanding and using further rules. For example, most
rules support specifying which voices they constrain, but this voices parameter can be at different
positions.

Voices can be muted in PWGL by an ENP-script (Kuuskankare & Laurson, 2006).

12

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI B !!!!
NI J

Centre for Learning Excellence

No student defined their own rules, even though we practised the definition of custom rules in class.
There are multiple possible reasons for this. While music technology students are used to composing,
most had little formal composition training, and they are therefore not used to thinking in terms of
compositional rules (in contrast to, say, composition students). Because they know few standard rules,
they probably did not miss any rules in system. While composers may like to develop their own rules as
part of the composition process (practice-based research), the music technology students were possibly
already overwhelmed by the range of rules provided. Lastly, using predefined rules is easier than
defining your own.

More generally, many students seemingly had difficulties or did not feel any need to review the musical
output of their patches. The tutor and the assessment brief explicitly encouraged students to manually
revise the generated music in software like Logic or Sibelius, but most students used their patch outputs
as ready-made musical snippets (like loops in Logic) without further editing. In future, we plan to
introduce formative peer feedback as a way to stronger encourage revisions, because peer feedback can
be more effective than feedback by the tutor (Strijbos et al., 2010).

Conclusions

This project aimed at enabling Music Technology students with little or no programming experience to
computationally model music theories such that students could control at the same time the rhythm,
melody, harmony, counterpoint, and motivic structure of music.

The proposed approach to computational music theory modelling offers a low floor. Visual programming
paved the way. The rule collection of Cluster Rules enabled students to model their own music theories
as a combination of predefined rules. All students controlled the harmony and melody, and some
students additionally restricted the rhythm, counterpoint, or specified motifs to use. Students were
particularly interested in the control over the harmony offered by the PWGL libraries, and they used the
musical results of their patches in original compositions.

This approach also offers a high ceiling. For example, complex polyphonic music can be modelled by
students who want to continue on their own after the unit, by postgraduate students, or by researchers.
Cluster Engine’s efficient search algorithm solves advanced problems in a reasonable amount of time.
Due to the integration in an established computer-aided composition ecosystem (PWGL) powerful
editors are available (e.g., a score editor); constraint programming can be combined with other
algorithmic composition approaches and PWGL libraries; and results can be output into multiple formats
(MIDI, MusicXML) for further editing in industry-standard software such as Logic or Sibelius. Perhaps
most importantly, users can define their own rules on various score contexts.

Students developed skills and knowledge in multiple areas in this algorithmic composition unit. Students
engaged in practice-based research. By developing computational models of music, they practised
computer programming and problem solving skills, as well as reflecting on how music is created, and
judging the aesthetic quality of their musical results.

Acknowledgments

Thanks to Orjan Sandred (University of Manitoba, Canada) for helpful feedback on a draft of this text.
This research has been supported by the Rising Stars Programme research grant of the University of
Bedfordshire.

Bibliography

Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C., Norman, M.K. (2010) How Learning Works: Seven
Research-Based Principles for Smart Teaching, San Francisco: Jossey Bass

Anders, T. (2014) ‘Modelling Durational Accents for Computer-Aided Composition’, in Proceedings of the 9th
Conference on Interdisciplinary Musicology — CIM14, Berlin, Germany.

Anders, T. (2016) ‘Compositions Created with Constraint Programming’, in McLean, A. and Dean, R.T., eds., The
Oxford Handbook of Algorithmic Music, Oxford: Oxford University Press.

Anders, T., Miranda, E.R. (2011) ‘Constraint Programming Systems for Modeling Music Theories and Composition’,
ACM Computing Surveys, 43(4), 30:1-30:38.

Apt, K.R. (2003) Principles of Constraint Programming, Cambridge: Cambridge University Press.

Barrett, E., Bolt, B. (Eds.) (2010) Practice as Research: Approaches to Creative Arts Enquiry, London: |. B. Tauris.

Boehm, C. (2007) ‘The discipline that never was: current developments in music technology in higher education in
Britain’, Journal of Music, Technology and Education, 1(1), 7-21.

13

University of Volume 6, Issue 1
Bedfordshire

. Journal of Pedagogic Development CI B !!!!
NI J

Centre for Learning Excellence

Cunningham, M.G. (2007) Technique for Composers, Milton Keynes: AuthorHouse.

Fernandez, J.D., Vico, F. (2013) ‘Al Methods in Algorithmic Composition: A Comprehensive Survey’, Journal of
Artificial Intelligence Research, 48, 513-582.

Healey, M., Jenkins, A. (2009) Developing Undergraduate Research and Inquiry, Higher Education Academy.

Hewitt, M. (2009) Composition for Computer Musicians, Boston: Course Technology.

Hewitt, M. (2011) Harmony for Computer Musicians, Boston: Course Technology.

Hinton-Smith, T. (Ed.) (2012) Widening Participation in Higher Education: Casting the Net Wide?, Baskingstoke:
Palgrave Macmillan.

Jenkins, T. (2002) ‘On the difficulty of learning to program’, in Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 53—58.

Jeppesen, K. (1939) Counterpoint: The Polyphonic Vocal Style of the Sixteenth Century, New York: Prentice-Hall.

Kreidler, J. (2009) Loadbang: Programming Electronic Music in Pd, Wolke Publishing House.

Kuuskankare, M., Laurson, M. (2006) ‘Expressive notation package’, Computer Music Journal, 30(4), 67-79.

Landy, L. (2007) Understanding the Art of Sound Organization, Cambridge, USA: MIT Press.

Laurson, M., Kuuskankare, M., Norilo, V. (2009) ‘An Overview of PWGL, a Visual Programming Environment for
Music’, Computer Music Journal, 33(1), 19-31.

Lester, J. (1986) The Rhythms of Tonal Music, Carbondale: Southern Illinois University Press.

Michaelson, G. (2015) ‘Teaching Programming with Computational and Informational Thinking’, Journal of
Pedagogic Development, 5(1), 51-66.

Moore, D. (2014) ‘Supporting students in music technology higher education to learn computer programming’,
Journal of Music, Technology and Education, 7(1), 75-92.

Nierhaus, G. (2009) Algorithmic Composition: Paradigms of Automated Music Generation, New York: Springer.

Pachet, F., Roy, P. (2001) ‘Musical Harmonization with Constraints: A Survey’, Constraints Journal, 6(1), 7-19.

Piston, W. (1947) Counterpoint, New York: W. W. Norton.

Rameau, J.P. (1984) Treatise on Harmony, New York: Dover.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B. (2009) ‘Scratch: programming for all’, Communications of the ACM, 52(11), 60—67.

Rothstein, J. (1995) MIDI: A Comprehensive Introduction, 2nd ed, Madison, WI: A-R Editions, Inc.

van Roy, P., Haridi, S. (2004) Concepts, Techniques, and Models of Computer Programming, Cambridge, USA: MIT
Press.

Russo, W., Ainis, J., Stevenson, D. (1988) Composing Music: A New Approach, University of Chicago Press.

Sandred, O. (2003) ‘Searching for a Rhythmical Language’, in PRISMA 01, Milano: EuresisEdizioni.

Sandred, 0. (2010) ‘PWMC, a Constraint-Solving System for Generating Music Scores’, Computer Music Journal,
34(2), 8-24.

Schilingi, J.B. (2009) ‘Local and Global Control in Computer-Aided Composition’, Contemporary Music Review, 28(2),
181-191.

Schoenberg, A. (1967) Fundamentals of Musical Composition, London: Faber and Faber.

Schoenberg, A. (1983) Theory of Harmony, Berkeley: University of California Press.

Strijbos, J.-W., Narciss, S., Diinnebier, K. (2010) ‘Peer feedback content and sender’s competence level in academic
writing revision tasks: Are they critical for feedback perceptions and efficiency?’, Learning and instruction, 20(4),
291-303.

Wilson, S., Cottle, D., Collins, N. (2011) The SuperCollider Book, Cambridge, USA: MIT Press.

14

