
MuBu — Multi-Buffer
Package for Max

MuBu Introduction
• Development lead by Norbert Schnell 2009–2017

• collaborators:  
Riccardo Borghesi, Diemo Schwarz, Jean-Philippe
Lambert, Frédéric Bevilacqua, ISMM team

• available on Max package manager or Ircam Forum
(most up to date, currently v1.9.11): 
https://forum.ircam.fr/projects/detail/mubu/

• more info: http://ismm.ircam.fr/mubu

• support on Ircam Forum discussion groups

http://ismm.ircam.fr/mubu

History

 
from A brief history of MAX 
(François Dechelle)

N. Schnell & team 2003

N. Schnell & team 2010

FTM, MnM, Gabor

MuBu

Motivation
• Create a solid and open framework for the experimentation with

recorded data streams of multiple representations in Max/MSP

• audio samples

• audio descriptors

• gesture and motion capture data

• spectral audio representations

• symbolic representations

• segmentation and annotations

Container Data Structure

• Array of buffers
• each buffer has the same array of tracks

 track 1

...

 track 2

 track 3

 track T

. . .

buffer 1

buffer 2

buffer 3

buffer B

Track Data Structure

• Array of frames, with time-tags or constant frame rate
• each frame contains:

• 2D matrix data with named columns,  
optional: variable number of rows

• “extra” data (labels)
• Track meta-data

parameters

info dictionary

matrix  
column names

...time-tags (64-bit float)

...

...

...

variable number of matrix rows (int)

extra data (symbols or other)

N x M matrix data (32-bit float)

File Formats

• SDIF import and export

• Plain text data, markers and labels file import and
export

• MIDI standard file import

• MusicXML import

• Save/load data with Max patcher (for small
amounts of data)

Visualization and Editing

• Based on the Juce framework
• Set of editor/visualization components

• waveform (single or multi-channel)
• break-point function (single or also multi-channel)
• sonogram (of sampled or time-tagged data)
• markers (with duration and offset)
• textual tables/matrices
• piano roll (or simplified staffs)
• traces (waveform or bpf with color and thickness)
• Control components (scroll bar, rulers, toolbar, tabs,

buffer chooser, etc.)

Editor Control Components (1/2)

Editor Control Components (2/2)

Synthesis

• mubu.granular~ granular synthesis, PSOLA

• mubu.concat~ segment-based granular and
concatenative synthesis

• mubu.play~ general audio and data playback

• mubu.additive~ FFT-1 additive synthesis

Granular Envelopes and Markers

grains into one or multiple output streams very similar to
the design of typical Gabor applications. Other than Gabor,
ZsaZsa is limited to asynchronous and synchronous granular
synthesis and concatenative synthesis. The ZsaZsa library
implements a completely generic engine that distinguishes
these three synthesis modes only by the disposition and suc-
cession of synthesised segments (i.e. grains) and the chosen
control parameters.

The ZsaZsa synthesis engine has a slightly extended set
of granular synthesis parameters and implements different
segmentation schemes corresponding to the markers and seg-
ments provided by the MuBu container. Without segmenta-
tion, a grain is defined by an arbitrary onset time and durati-
on in the source audio stream. When defining a segmentati-
on (e.g. by referring to a MuBu track with time-tags and/or
segments), a grain can be determined by one two or three
markers, and a set of parameters illustrated in figure 3.

Especially for synthesis using segmentation, the player
can be extended by a custom callback function. The callback
function is implemented by the synthesis module integrating
the ZsaZsa engine and is called each time when a new seg-
ment has to be synthesised taking into account the current
Period/Tempo or TempoFactor. A callback function custo-
mised for a particular application determines the next seg-
ment to be synthesised represented by an index in the mar-
ker arrays. For example, a callback function could simply
count forwards or backwards looping through the segments,
randomly shuffle segments, or calculate the next segment re-
garding a set of rules, a statistical model and/or similarities
calculated from a set of audio descriptors associated to the
segments.

tail

attack

head

onset time
segment
begin

segment
end

release

tail

attack release

head

onset time

tail

attack release

head

onset time

tail

attack release

head

onset time

Figure 3. ZsaZsa windows defined by one, two or three
markers and in the case of pitch synchronous synthesis.

In a first version, the ZsaZsa library has been integrated
into three different Max/MSP modules, one performing gra-
nular synthesis (synchronous if a track of waveform markers
is available in the referred MuBu), one performing descrip-
tor based granular synthesis, and one for concatenative syn-
thesis using a segmentation track.

4. CONCLUSIONS AND FUTURE WORK

We have assembled a complementary set of state-of-the-art
audio processing tools integrated with Max/MSP that in-
clude a flexible data container enabling the experimentation
with novel audio processing paradigms based on automatic
analysis and annotation of recorded sounds.

Our current efforts are dedicated to the integration of
further processing tools and paradigms, while keeping the
developed framework simple and modular and trying to find
an optimal balance between generic and easy-to-use.

5. ACKNOWLEDGEMENTS

The SampleOrchestrator coordinated by Hugues Vinet at
IRCAM has been funded by the French National Research
Agency. We especially would like to acknowledge our col-
leagues that have collaborated on different versions of the
described developments: David Fenech, Carmine Emanuele
Cella, Nicolas Sursock and Juan-Jose Burred.

Many thanks also to the team from Universal Sound
Bank and especially Remy, Olivier and Alain, who have be-
en (and still are) great partners in this project and with whom
we hopefully continue soon on a new adventure.

6. REFERENCES

[1] N. Bogaards, “Analysis-Assisted Sound Processing
with Audiosculpt,” in DAFx, Septembre 2005.

[2] J. J. Burred, C. E. Cella, G. Peeters, A. Röbel, and
D. Schwarz, “Using the SDIF Sound Description Inter-
change Format for Audio Features,” in ISMIR, 2008.

[3] N. Schnell et al., “FTM — Complex data structures for
Max,” in ICMC, Septembre 2005.

[4] ——, “Gabor, Multi-Representation Real-Time Analy-
sis/Synthesis,” in DAFx, Septembre 2005.

[5] G. Peeters, “A large set of audio features for sound des-
cription (similarity and classification) in the CUIDADO
project,” IRCAM, Tech. Rep., 2004.

[6] ——, “Template-based estimation of time-varying tem-
po,” EURASIP, 2006.

[7] A. Roebel, “A new approach to transient processing in
the phase vocoder,” in DAFx, Septembre 2003.

[8] D. Schwarz, N. Schnell, and S. Gulluni, “Scalabilty
in Content-Based Navigation of Sound Databases,” in
ICMC, August 2009.

[9] M. Wright, R. Dudas, S. Khoury, R. Wang, and D. Zi-
carelli, “Supporting the Sound Description Interchange
Format in the Max/MSP Environment,” in ICMC, Octo-
ber 1999.

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

Applications CataRT

Bindings MuBu for Max

Packages MuBu PiPo

Libraries Zsazsa XMM RTA

Components

Open Source

PiPo — Plugin Interface
for Processing Objects

Context: Content-based Audio
Processing
development of interactive audio and movement applications
collaboration with artists and other researchers
analyse and annotate audio and motion sensor streams

modelling,
generators,
synthesis,

etc.

extraction,
filtering,

segmentation,
etc.

audio or sensor  
data streams

mixing,
spatialization,

effects,
etc.

audio or control
data streams

afferent
stream 

processing

efferent
stream 

processing

instrument pluginsaudio analysis plugins

interaction and
sound generation

sensors,
recording,

file storage,

file storage,
rendering,
actuators,

effect plugins
(e.g. VST, AudioUnits, LADSPA)(e.g. FEAPI, VAMP)

existing
audio

solutions

… …

Motivations

integration of algorithms of different origins (i.e. developers) into a
given application and into different contexts and applications,  
applied to data streams in real-time and offline
use/comparison of different algorithms of thesimilar functionalities in
a given context (e.g. applying different filters, extractors or classifiers
to the same input stream)

Top Level Requirements

Multi-Modality input data can be motion and other data not only
audio
User-Composability of Modules e.g. chaining feature extractors,
smoothing filters, segmentation, and temporal modeling in the host
environment, without having to write and compile code →
experimentation, rapid prototyping

Dynamic Loading of Plugins add processing modules as plugins to
an existing host installation (e.g. as shared libraries)

Functional Requirements

Scheduling Processing in batch on files or buffers, or real-time
input stream
Segmentation Several streams of segmentations in parallel and
overlapping segments, or implicit segmentation, where segments are
analysis frames, elementary waveforms, or whole sound files.
Temporal Modeling Integrate any number of temporal modeling
algorithms, universal (modeling all descriptors, e.g. mean) or
specific (modeling specific descriptors only).
Data Type Data can be numeric scalars, vectors, matrices, or
strings

Implementation Requirements

Easy Integration and Efficiency Any platform and environment,
real-time and resource-constrained systems (SBCs) → API must be
in C or C++
Efficient Modularisation Efficient implementation, by sharing
calculation results (FFT), avoiding copying by direct write to
destination
External Data Streams and sources of segmentation (human
tapping or existing analysis files) integrateable into the data flow
Reanalysis Recalculate a subset of descriptors or only
segmentation and subsequent temporal modeling

API Overview

Simplicity
only 2 to 4 methods need to be implemented, single input/output, 
helper classes to declare module parameters

Data stream
succession of frames as module input and output

 frames are float matrices with named columns, sampled or time
tagged

Phases
setup passing stream attributes through module graph, init
modules, 
 allocate memory: streamAttributes() method
processing pass data through graph: frames() method
cleanup finalize() pending data, reset() stream

PiPo Host

takes care of source/sink, building and instantiating module graph,
error reporting

input
data

stream

output
data
stream

PiPo host

frame
sink

frame
source

error reporting

PiPo
operator

A

PiPo
operator

B

PiPo
operator

C

API Example http://github.com/Ircam-RnD/pipo-sdk

• connecting a terminating sink to the output of the
chain

• acquiring the input stream

• initializing the modules by sending the input stream
attributes into the chain

• handling initialization errors emitted by the modules

• sending the frames of the input stream into the chain
and handling the frames of the output stream

• allowing for real-time parametrization of the mod-
ules (if applicable)

The PiPo API includes abstractions that support the im-
plementation of hosts.

3. IMPLEMENTATION

PiPo is an API that essentially consists of a single C++
header file. This file defines the base PiPo class, and its
declared parameters. 10 .

3.1 The PiPo API

The minimal module must inherit from the class PiPo
and implement at least the streamAttributes and
frames methods:

In streamAttributes, all initialisation can be
done, as all input stream attributes are known. The
output stream attributes are passed on to the receiv-
ing module via propagateStreamAttributes. In
frames, only data processing and, when needed, buffer-
ing should be done. Output frames are passed on with
propagateFrames.

If the module can produce additional output data af-
ter the end of the input data (e.g. filters), it must im-
plement finalize, from within which more calls to
propagateFrames can be made, followed by a manda-
tory call to propagateFinalize.

If the module keeps internal state or buffering, it should
implement the reset method to put itself into a clean
state.

A segmentation module calls the method
propagateSegment to signal the onset, offset and
exact boundaries of a new segment to following temporal
modeling modules (which implement segment).

The utility function signalError can be used to pass
an error message to the host.

3.2 Module Parameters

The template class PiPo::Attr permits to define scalar,
enum, or variable or fixed size vector parameters of a pipo
module that are exposed to the host environment.

They are initialised in the module constructor with a
short name, a description, a flag if a change of value means
the fundamental stream parameters must be reset (if true,

10
https://github.com/Ircam-RnD/pipo-sdk/tree/master/include

streamAttributes will be called again for the whole
chain), and a default value.

Their value can be queried in streamAttributes

or frames (in real-time hosts, a parameter’s value can
change over time) with PiPo::Attr::get().

3.3 Example of a Minimal PiPo Module
class PiPoGain : public PiPo

{
private:

std::vector<PiPoValue> buffer;

public:

PiPoScalarAttr<double> factor;

PiPoGain (Parent

*

parent, PiPo

*

receiver = NULL)

: PiPo(parent, receiver),

factor(this, "factor", "Gain Factor", false, 1.0) { }

⇠
PiPoGain (void) { }

int streamAttributes (bool hasTimeTags, double rate,

double offset, unsigned int width, unsigned int height,

const char

**

labels, bool hasVarSize,

double domain, unsigned int maxFrames)

{ // can not work in place, create output buffer

buffer.resize(width

*

height

*

maxFrames);

return propagateStreamAttributes(hasTimeTags, rate,

offset, width, height, labels,

hasVarSize, domain, maxFrames);

}

int frames (double time, PiPoValue

*

values,

unsigned int size, unsigned int num)

{ // get gain factor here, it could change while running

double f = factor.get();

PiPoValue

*

ptr = &buffer[0];

for (unsigned int i = 0; i < num; i++)

{
for (unsigned int j = 0; j < size; j++)

ptr[j] = values[j]

*

f;

ptr += size;

values += size;

}

return propagateFrames(time, &buffer[0], size, num);

}
};

3.4 Existing Modules

The list of existing PiPo modules can be organized into the
following categories:

Stream Processing slice (windowing), scale, sum,
select (get columns),

Filtering biquad (biquad filter), mvavrg (moving aver-
age filter), median (median filter), delta (deriva-
tive), finitedif [9], bayesfilter [10]

Segmentation onseg (segments starting at signal onset),
chop (segments of regular intervals), gate (seg-
ments excluding weak sections), sylseg [16]

Temporal Modeling mean, std, meanstd, min, max

Analysis descr (basic audio descriptors), yin (pitch
extractor), moments (centroid, spread, skew-
ness, kurtosis), lpc (linear predictive coding),
lpcformants (formant extraction), psy (pitch
synchronous markers), ircamdescriptor [18]

API Example http://github.com/Ircam-RnD/pipo-sdk

• connecting a terminating sink to the output of the
chain

• acquiring the input stream

• initializing the modules by sending the input stream
attributes into the chain

• handling initialization errors emitted by the modules

• sending the frames of the input stream into the chain
and handling the frames of the output stream

• allowing for real-time parametrization of the mod-
ules (if applicable)

The PiPo API includes abstractions that support the im-
plementation of hosts.

3. IMPLEMENTATION

PiPo is an API that essentially consists of a single C++
header file. This file defines the base PiPo class, and its
declared parameters. 10 .

3.1 The PiPo API

The minimal module must inherit from the class PiPo
and implement at least the streamAttributes and
frames methods:

In streamAttributes, all initialisation can be
done, as all input stream attributes are known. The
output stream attributes are passed on to the receiv-
ing module via propagateStreamAttributes. In
frames, only data processing and, when needed, buffer-
ing should be done. Output frames are passed on with
propagateFrames.

If the module can produce additional output data af-
ter the end of the input data (e.g. filters), it must im-
plement finalize, from within which more calls to
propagateFrames can be made, followed by a manda-
tory call to propagateFinalize.

If the module keeps internal state or buffering, it should
implement the reset method to put itself into a clean
state.

A segmentation module calls the method
propagateSegment to signal the onset, offset and
exact boundaries of a new segment to following temporal
modeling modules (which implement segment).

The utility function signalError can be used to pass
an error message to the host.

3.2 Module Parameters

The template class PiPo::Attr permits to define scalar,
enum, or variable or fixed size vector parameters of a pipo
module that are exposed to the host environment.

They are initialised in the module constructor with a
short name, a description, a flag if a change of value means
the fundamental stream parameters must be reset (if true,

10
https://github.com/Ircam-RnD/pipo-sdk/tree/master/include

streamAttributes will be called again for the whole
chain), and a default value.

Their value can be queried in streamAttributes

or frames (in real-time hosts, a parameter’s value can
change over time) with PiPo::Attr::get().

3.3 Example of a Minimal PiPo Module
class PiPoGain : public PiPo

{
private:

std::vector<PiPoValue> buffer;

public:

PiPoScalarAttr<double> factor;

PiPoGain (Parent

*

parent, PiPo

*

receiver = NULL)

: PiPo(parent, receiver),

factor(this, "factor", "Gain Factor", false, 1.0) { }

⇠
PiPoGain (void) { }

int streamAttributes (bool hasTimeTags, double rate,

double offset, unsigned int width, unsigned int height,

const char

**

labels, bool hasVarSize,

double domain, unsigned int maxFrames)

{ // can not work in place, create output buffer

buffer.resize(width

*

height

*

maxFrames);

return propagateStreamAttributes(hasTimeTags, rate,

offset, width, height, labels,

hasVarSize, domain, maxFrames);

}

int frames (double time, PiPoValue

*

values,

unsigned int size, unsigned int num)

{ // get gain factor here, it could change while running

double f = factor.get();

PiPoValue

*

ptr = &buffer[0];

for (unsigned int i = 0; i < num; i++)

{
for (unsigned int j = 0; j < size; j++)

ptr[j] = values[j]

*

f;

ptr += size;

values += size;

}

return propagateFrames(time, &buffer[0], size, num);

}
};

3.4 Existing Modules

The list of existing PiPo modules can be organized into the
following categories:

Stream Processing slice (windowing), scale, sum,
select (get columns),

Filtering biquad (biquad filter), mvavrg (moving aver-
age filter), median (median filter), delta (deriva-
tive), finitedif [9], bayesfilter [10]

Segmentation onseg (segments starting at signal onset),
chop (segments of regular intervals), gate (seg-
ments excluding weak sections), sylseg [16]

Temporal Modeling mean, std, meanstd, min, max

Analysis descr (basic audio descriptors), yin (pitch
extractor), moments (centroid, spread, skew-
ness, kurtosis), lpc (linear predictive coding),
lpcformants (formant extraction), psy (pitch
synchronous markers), ircamdescriptor [18]

Module Library

Stream Processing: slice (windowing), scale, sum, select (get columns), const
Filtering: biquad (biquad filter), mvavrg (moving average filter), median (median
filter), delta (derivative), finitedif, bayesfilter
Segmentation: onseg (segments starting at signal onset), chop (segments of
regular intervals), gate (segments excluding weak sections), sylseg (syllable
segmentation)
Temporal Modeling: mean, std, meanstd, min, max
Analysis: descr (basic audio descriptors), yin (pitch extractor), moments
(centroid, spread, skewness, kurtosis), lpc (linear predictive coding), lpcformants
(formant extraction), psy (pitch synchronous markers), ircamdescriptor
Frequency Domain Processing: fft (FFT from pre-windowed frames), dct
(discrete cosine transform), bands (mel bands and similar from power or
amplitude spectrum), mel (mel bands from audio stream), mfcc (MFCC from
audio stream), wavelet (wavelet transform from audio stream)

PiPo basic

slice scalesum

moments

yin
f0, periodicity, ac0, ac1

fft power spectrum

spectral moments

loudness
windowed frames

f0,
periodicity,
ac0, ac1,
loudness,
spectral
moments

audio
samples

PiPo Graphs
Modules in sequence or parallel, merge of output concatenates
columns
User level graph syntax
 slice<yin,fft<sum:scale,moments>>

Bindings

Max/MSP
via MuBu package http://ismm.ircam.fr:  

 real-time with pipo~ or pipo, offline with mubu.process
Juce, OpenFrameworks, OpenMusic, Unity3D
 via IAE (Interactive Audio Engine) library

Acknowledgements

This project has received funding from the European Union’s Horizon
2020 research and innovation programme H2020-ICT-2014-1 under
grant agreement No 644862

