MuBu — Multi-Butter
Package for Max

MuBu Introduction

Development lead by Norbert Schnell 2009-2017
e collaborators:
Riccardo Borghesi, Diemo Schwarz, Jean-Philippe
Lambert, Frédéric Bevilacqua, ISMM team
available on Max package manager or Ircam Forum
(most up to date, currently v1.9.11):
https://forum.ircam.fr/projects/detail/mubu/

more info: http:/ismm.ircam.fr/mubu

support on Ircam Forum discussion groups

http://ismm.ircam.fr/mubu

HIStory

from A brief history of MAX
(Francois Dechelle)

1986

M. Puckette

Paicher

1990 lD Zicarellh

MAX
Opcode

1996 M. Puckette

Fd

1997 ' D Zicarelli

MAX

MSF

' M. Puckette 1990 l

Max | FTS

1905

Max
NeXT /X

F Deéchelle
M. De Cecco

FIs

1998

F. Déchelle
& Group

v
MUBU N. Schnell & team 2010

—

r—

=

untill 1.4

1978

4X

NeXT
ISPW

o o

FTM, MnM, Gabor N.Schnell & team 2003

ouBn) 1J d

dﬂOJD 2 UUeuROuwT g

Votivation

* Create a solid and open framework for the experimentation with
recorded data streams of multiple representations in Max/MSP

e audio samples

e audio descriptors

e gesture and motion capture data
e spectral audio representations

e symbolic representations

e segmentation and annotations

Container Data Structure

* Array of buffers

* each buffer has the same array of tracks

rack |

rack 2

rack 3

rack T

| 19fjnq
Z 2linq |

g 94ing |

o

Track Data Structure

e Array of frames, with time-tags or constant frame rate
each frame contains:
e 2D matrix data with named columns,

optional: variable number of rows

e “extra” data (labels)
 Jrack meta-data

matrix

\-

column names

J

Ve

\

info dictionary |

e N (] A
time-tags (64-bit float)
parameters _ /
1 A
\. J
e A

N x M matrix data (32-bit float)

variable number of matrix rows (int)

...

[extra data (symbols or other)]

File Formats

 SDIF import and export

* Plain text data, markers and labels file import and
export

 MIDI standard file import
* MusicXML import

e Save/load data with Max patcher (for small
amounts of data)

Visualization and Editing

e Based on the Juce framework

» Set of editor/visualization components
e waveform (single or multi-channel)
* pbreak-point function (single or also multi-channel)
e sonogram (of sampled or time-tagged data)
 markers (with duration and offset)
e textual tables/matrices
e piano roll (or simplified staffs)
* traces (waveform or bpf with color and thickness)

e Control components (scroll bar, rulers, toolbar, tabs,
buffer chooser, etc.)

eans |

/Isound}~ barki marken.

L
s
OOO.mO
]
v
olo|lo|lo|e
o - 2
— i
2| |%|5
—| o
QOt.lo
2 |8
S Ela
o =
*
N | E
: olo|lo
©l's
o

-
‘j’ bpfs \markers \

QuATD

wzo

secondo

mano

m) NS E e

DR

Editor Control Components (112

DomainRuler Tabs Views

":?l llzqoll l/llll6q0ll () lllgololo'lll..'!4lolol..' I..{8|7.....?zpp....'.'?qo.o.'.' '

Iaudnoi'\m.nk:rr-.-fr' "

]/ 4 (O | e
T X 5

RangeRuler BufferChooser Toolbar DomainScrollbar

Editor Control Components (2.

Synthesis

- mubu.granular~ granular synthesis, PSOLA

- mubu.concat~ segment-based granular and
concatenative synthesis

- mubu.play~ general audio and data playback

- mubu.additive~ FF1-1 additive synthesis

Granular Envelopes and Markers

onset time

onset time

tail

release

tail

head
attack

onset time

onset time

segment
begin

|||||| uﬁu-u-u-u----u-
)
= |8
S k)
9]
p .
e Y
y
~
h=]
g |5
= S
\4
S
-
©
S
b5 A
<
~
v]
S
—d
L)
S
v

Components

Applications

Bindings

Packages

Libraries

CataRT

MuBu for Max

MuBu

PiPo

/sazsa

XMM

RTA

Open Source

PIPo — Plugin Interface
for Processing Objects

Context: Content-based Audio
Processing

development of interactive audio and movement applications
collaboration with artists and other researchers

analyse and annotate audio and motion sensor streams

audio or sensor
data streams

afferent
stream

processing

extraction,
filtering,

interaction and

sound generation

-

sensors,
recording,
file storage,...

existing
audio
solutions

segmentation,
etc.

audio analysis plugins
(e.g. FEAPL,VAMP)

instrument plugins

modelling,
generators,

synthesis,
etc.

effect plugins
(e.g.VST, AudioUnits, LADSPA)

efferent
stream
processing
mixing, audio or control
) spatialization, data StrE)ams
effects, file storage,
etc. rendering,
actuators,...

Motivations

integration of algorithms of different origins (i.e. developers) into a
given application and into different contexts and applications,
applied to data streams in real-time and offline

use/comparison of different algorithms of thesimilar functionalities in
a given context (e.g. applying different filters, extractors or classifiers

to the same input stream)

Top Level Requirements

Multi-Modality input data can be motion and other data not only
audio

User-Composability of Modules e.g. chaining feature extractors,
smoothing filters, segmentation, and temporal modeling in the host
environment, without having to write and compile code —
experimentation, rapid prototyping

Dynamic Loading of Plugins add processing modules as plugins to
an existing host installation (e.g. as shared libraries)

Functional Requirements

Scheduling Processing in batch on files or buffers, or real-time
Input stream

Segmentation Several streams of segmentations in parallel and
overlapping segments, or implicit segmentation, where segments are
analysis frames, elementary waveforms, or whole sound files.

Temporal Modeling Integrate any number of temporal modeling
algorithms, universal (modeling all descriptors, e.g. mean) or
specific (modeling specific descriptors only).

Data Type Data can be numeric scalars, vectors, matrices, or

Implementation Requirements

Easy Integration and Efficiency Any platform and environment,
real-time and resource-constrained systems (SBCs) — APl must be

in C or C++

Efficient Modularisation Efficient implementation, by sharing
calculation results (FFT), avoiding copying by direct write to
destination

External Data Streams and sources of segmentation (human
tapping or existing analysis files) integrateable into the data flow

Reanalysis Recalculate a subset of descriptors or only
segmentation and subseqguent temporal modeling

APl Overview

Simplicity
only 2 to 4 methods need to be implemented, single input/output,
helper classes to declare module parameters
Data stream
succession of frames as module input and output

frames are float matrices with named columns, sampled or time
tagged

Phases

setup passing stream attributes through module graph, init
modules,

allocate memory: streamAttributes () method
processing pass data through graph: frames () method
cleanup finalize() pending data, reset() stream

PiPo Host

takes care of source/sink, building and instantiating module graph,
error reporting

PiPo host
input output
data . . . data
e | stream PiPo PiPo PiPo stream | frame
> operator operator operator .
source A R C sink

v v v
error reporting

APl Example

class Pi1PoGain : public PiPo

{

private:

std: :vector<PiPoValue> buffer;

public:

PiPoScalarAttr<double> factor;

PiPoGain (Parent <*parent, PiPo xreceiver = NULL)
PiPo (parent, receiver),
factor (this, "factor", "Gain Factor", false, 1.0) { }

~PiPoGain (void) { }

int streamAttributes (bool hasTimeTags, double rate,
double offset, unsigned 1int width, unsigned int height,
const char *xlabels, bool hasVarSize,
double domain, unsigned 1nt maxFrames)

{ // can not work in place, create output buffer
buffer.resize (width * height x maxFrames);

return propagateStreamAttributes (hasTimeTags, rate,
offset, width, height, labels,
hasVarSize, domain, maxFrames);

http://github.com/Ircam-RnD/pipo-sdk

API Example http://github.com/Ircam-RnD/pipo-sdk

int frames (double time, PiPoValue x*values,
unsigned 1nt size, unsigned 1int num)
{ // get gain factor here, it could change while running
double £ = factor.get();
PiPoValue *ptr = &buffer[0];

for (unsigned int 1 = 0; 1 < num; 1i++)
for (unsigned int 3 = 0; j < size; J++)
ptr[J] = values[]] * £f;
ptr += size;

values += size;

}

return propagateFrames (time, &buffer[0], size, num);

Module Library

Stream Processing: slice (windowing), scale, sum, select (get columns), const

Filtering: biquad (biquad filter), mvavrg (moving average filter), median (median
filter), delta (derivative), finitedif, bayesfilter

Segmentation: onseg (segments starting at signal onset), chop (segments of
regular intervals), gate (segments excluding weak sections), sylseg (syllable
segmentation)

Temporal Modeling: mean, std, meanstd, min, max

Analysis: descr (basic audio descriptors), yin (pitch extractor), moments
(centroid, spread, skewness, kurtosis), lpc (linear predictive coding), Ipcformants
(formant extraction), psy (pitch synchronous markers), ircamdescriptor

Frequency Domain Processing: fft (FFT from pre-windowed frames), dct
(discrete cosine transform), bands (mel bands and similar from power or
amplitude spectrum), mel (mel bands from audio stream), mfcc (MFCC from
audio stream), wavelet (wavelet transform from audio stream)

PiPo Graphs

Modules in sequence or parallel, merge of output concatenates

columns
User level graph syntax

slice<yin,fft<sum:scale,moments>>

fo,
periodicity,
ac0, acl,
loudness,
spectral
moments
>

PiPo basic
f0, periodicity, ac0, acl
—> yin
audio
sample loudness
> slice windowed frames —> sum — > scale
— ffe power spectrum

spectral moments

—> moments

Bindings

Max/MSP

via MuBu package http://ismm.ircam.fr:
real-time with pipo~ or pipo, oftline with mubu.process

Juce, OpenFrameworks, OpenMusic, Unity3D
via IAE (Interactive Audio Engine) library

Acknowledgements

This project has received funding from the European Union’s Horizon
2020 research and innovation programme H2020-ICT-2014-1 under
grant agreement No 644862

