
OMTimePack Reference
for version 2.5, August 2005

Table of Contents

Introduction 2

Generators 4

m-rhythm 4

m-mapped-rhythm 7

m-empty-bars 8

m-vari-pulse 9

Transformations 11

conform 11

m-partition 11

Utilities 12

timepoints->density 12

resize-ptable 13

thru 13

gm-pgmout 14

Constants 14

max-pool-size 14

max-ptable-rank 14

Tutorial patches 15

m-rhythm basics 15

m-rhythm interpolation 16

m-rhythm target 17

m-rhythm cascade 18

m-partition 19

empty-bars vari-pulse 19

mapped-rhythm 21

2 [TimePack 2.5]

OMTimePack Reference
for version 2.5, August 2005

Introduction
OMTimePack (OMTP) is an OpenMusic library for creating and manipulating rhythms, which are

structured as lists of durations or timepoints. Because of their stochastic nature, several OMTP functions
resemble or overlap with resources in the OpenMusic kernel (including om-random, perturbation, nth-
random, and permut-random) as well as other user libraries (notably OMAlea and OMLZ). However, the tools
in OMTP are specialized in ways that set them apart from other OpenMusic resources and give this library a
“flavor” all its own.

Version 2.5 is an advance on the previous public release of OMTP, version 1.0, in two senses. First, the
main generative function, m-rhythm (named “marktime” in version 1.0) has gained additional features,
notably target-based weighting, and interpolation between probability tables is simpler and more flexible. And
second, several new functions have been added that operate on the same basic stochastic principles as m-
rhythm: m-empty-bars, m-vari-pulse, and m-mapped-rhythm. While output from the original m-rhythm
function tends to require quantization before it can be represented in conventional music notation, these new
functions allow the creation of complex rhythms that remain within the limits of idiomatic metrical notation.
(For a constrasting approach to this problem, see the OMRC library, which influenced the design of these
new functions in OMTP.)

Users of version 1.0 may notice that certain functions (analyze-durs, homogenize) have been removed
from version 2.5. It was felt that these functions were at odds with the central idea of the library, which is that
complex rhythmic results can be produced by means of small event pools and simple statistical controls. (The
analyze-durs function tended to produce large event pools and probability tables, and homogenize did not
provide a very useful means of simplifying these parameters.)

The “m” functions

The re-naming of old functions and the addition of new ones yields a family of functions whose names
begin with the prefix “m”: m-rhythm, m-partition, m-empty-bars, m-vari-pulse, and m-mapped-rhythm.
The “m” stands for Markov, since each of these functions involves a low-order Markov process, in which
random selections from a pool (explicit or implicit) are controlled by a one-, two-, or three-dimensional
probability table. (A larger number of dimensions can be obtained by resetting the global constant *max-
ptable-rank*, but this may degrade the performance of various OMTP functions.) Users for whom this
process is not immediately intuitive are advised to begin by exploring the m-rhythm function; the main
Reference entry on this function discusses a number of simple examples. Study of the full set of tutorial patches
provided with OMTP is also recommended.

Guidelines for probability table construction

A great variety of probability-table constructs are possible, almost all of which have musical potential. But
the user should be alert to two “problematic” situations: loops and rows of zeros. The following table (Figure
1) includes two loops. The simpler loop results from the highlighted cell in the second row: the only event with
a nonzero chance of succeeding event2 is event2 again; thus if event2 is selected once, it will be selected over
and over again for the remainder of the process. A similar loop, involving event3 and event4, is caused by the
highlighted cells in the third and fourth rows. In some situations the effect of a loop may be desirable (and
particularly interesting results can result from interpolation between two probability tables, one of which
includes loops: as the effective table evolves, the resulting rhythm will gradually become trapped in — or
escape from — a loop). But the user should take care to avoid unintentional loops in a probability-table
design.

[TimePack 2.5] 3

event1 event2 event3 event4

event1 0.25 0.25 0.25 0.25

event2 0 1 0 0

event3 0 0 0 1

event4 0 0 0.5 0.5

 Figure 1

A second “problematic” situation arises when a probability table contains one or more rows consisting
entirely of zeros. In the example given in Figure 2, the 3×3×3 table on the left contains one such row,
corresponding to the context (event1 event3). Theoretically, this context should never arise: as the shaded
cells indicate, each of the contexts (event1 event1), (event2 event1), or (event3 event1) has a zero
chance of progressing directly to event3. However, the problematic context could occur in the form of init-
conds supplied by the user or inherited from the fin-conds of another “m” function, in which case
calculations with the given ptable would fail, because each possible continuation has a zero chance of being
selected. To guard against this possibility, the normalization procedure performed within each “m” function
replaces any row of zeros with a row of equal nonzero values in a ptable parameter. A typical result is
illustrated on the right-hand side of Figure 2.

event1 event2 event3 event1 event2 event3

4 2 0 2/3 1/3 0

1 1 2 1/4 1/4 1/2

0 0 0 normalization → 1/3 1/3 1/3

1 0 0 1 0 0

0 0 2 0 0 1

2 1 2 2/5 1/5 2/5

0 2 0 0 1 0

0 1 1 0 1/2 1/2

0 1 0 0 1 0

 Figure 2

4 [TimePack 2.5]

Generators

m-rhythm
inputs

pool pool of durations/duration-patterns for
random selection

list of M items, each item a number
(representing a duration) or a list of
numbers (representing a duration-
pattern)

or list of the form

(bpf start pool-min pool-max)

ptable statistical control on random selection
(Markov process)

n-dimensional table structured as a
depth-n nested list:

n=1: list of M numbers

n=2: list of M items, each item a list of
M numbers

n=3: list of M items, each item a list of
M subitems, each subitem a list of M
numbers

etc.

or list of the form

(bpf start ptable-min ptable-max)

tot-time desired duration of output rhythm positive number

init-conds context for first few random selections list of at least n – 1 integers, each in the
range from 0 through M – 1 (will
tolerate a single number in place of a list
containing a single number)

optional inputs

pattern-boundary-
mode

determines format of pattern-
boundaries output

menu selection: note or note+rests

target-points specifies set of timepoints with which
coincidences in ldur can be favored or
disfavored

list in which each sublist is either a list of
timepoints or a special list of the form
(:PERIODIC period begin end)

target-hit-weight multiplier for probability of pool elements
that would cause coincidences with
target-points

nonnegative number (if greater than 1,
favors coincidences; if less than 1,
disfavors them)

target-distance maximum distance from target that counts
as coincidence with target

nonnegative number (defaults to 0)

[TimePack 2.5] 5

outputs

ldur list of durations representing a rhythm list of numbers

pattern-boundaries list of durations representing a rhythm list of numbers

fin-conds record of context for last random
selections when the process finishes

list of numbers

The m-rhythm function generates a rhythm in the form of a list of durations. It operates by repeatedly
selecting a duration or duration-pattern at random from pool and appending it to the end of ldur until the
result has a total duration of at least tot-time. Random selections are made according to a Markov process of
low order specified in ptable. If ptable is 1-dimensional, the probabilistic weight of each event is constant
(apart from the possibility of evolving probabilities described in BPF-driven interpolation, below). If p-table is n-
dimensional (with the maximum possible value of n determined by the global constant *max-ptable-rank*),
then the probabilistic weights in effect for each selection depend on the most recent (n – 1) selections or on
init-conds at the beginning of the process.

The pool parameter may consist of a mixture of single durations and duration-patterns. Each single
duration may represent a note or (when coded as a negative value) a rest. Duration-patterns are strings of
durations selected and appended to ldur in a single step of the generative process. Suppose that four
consecutive random selections during the generative process are the duration 50, the duration-pattern (-10
10 10), the duration -25, and the duration-pattern (20 20). Then the corresponding portion of the output
ldur will be (… 50 -10 10 10 -25 20 20). The pattern-boundaries output keeps track of the individual
durations and duration-patterns that constitute ldur. Returning to the previous example, with pattern-
boundary-mode set to note, the corresponding portion of the output pattern-boundaries would be (… 50 30
25 40). With pattern-boundary-mode set to note+rest, the same portion of the output would be (… 50 10
-10 -10 25 20 20 …); this format, which marks the first element of each pattern with a note and the
remaining elements with rests, is intended to provide a representation of pattern boundaries that will remain
synchronized with ldur when both are quantized identically.

Parameter restrictions

1. The size of each ptable dimension must match the number of elements in pool (so a 6-element pool
requires ptable to be a 6-element list, or a 6×6 table, or similar).

2. Each value in init-conds must be a valid index into pool.

3. The minimum length of the init-conds list is one less than the number of ptable dimensions; if the
init-conds list is longer than this minimum, extra values (at the head of the list) will be ignored.

Probability table examples

(a) 1-dim table (3/5 1/5 1/5)

3/5 1/5 1/5

Requires pool with three elements. There is a 3/5 chance of selecting the first element, a 1/5 chance of
selecting the second, and a 1/5 chance of selecting the third.

(b) 1-dim table (12 4 4)

12 4 4

Equivalent to (a): ptable rows need not be normalized.

(c) 2-dim table ((0.8 0.2) (0.5 0.5))

0.8 0.2

0.5 0.5

Requires pool with 2 elements. If the most recent selection was the first element (or if no selections have
been made yet and the last element of init-conds is 0), then there is an 80% chance of selecting the first

6 [TimePack 2.5]

element and a 20% chance of selecting the second. If the most recent selection was the second event (or if
no selections have been made yet and the last element of init-conds is 1), then the chances of selecting
the first and second events are equal.

(d) 3-dim table (((8 2) (5 5) ((1 0) (1 0)))

step: j – 2 j – 1

e0 e0 8 2

e0 e1 5 5

e1 e0 1 0

e1 e1 1 0

Requires pool with two elements, e0 and e1. Probabilities governing the selection to be made at step j
depend on the selections already made at steps j–2 and j–1. For instance, if e0 was selected at step j–2 and
e1 was selected at step j–1, then at step j the probabilities are 8/10 for e0 and 2/10 for e1.

BPF-driven interpolation

An OpenMusic bpf or break-point function consists of line segments concatenated to make a
continuous curve. The pool or ptable parameters (or both) can be formatted as special four-element lists,
where the first element is a bpf that is used to control interpolation between two pool or ptable parameters
held in the third and fourth positions of the list. For instance, when supplied with the parameter (bpf start
ptable-min ptable-max), m-rhythm will read bpf at x-values corresponding to the elapsed time at each step of
the generative process (taking the value start as the time at the beginning of the process). And it will use the
associated y-values to drive interpolation between the two ptable parameters in the list, using values from ptable-
min when bpf is at its minimum and from ptable-max when bpf is at its maximum, and interpolating between
values from ptable-min and ptable-max as bpf ranges between these extremes. Similarly, the parameter (bpf start
pool-min pool-max) will cause m-rhythm to interpolate between values drawn from pool-min and pool-max. In this
case, corresponding elements in the two pool parameters must have the same size: if the jth element of pool-min
is (15 30), then the jth element of pool-max can be (20 20), say, but not (10 10 10) or (25).

Target-based weighting

The optional target-points and target-hit-weight parameters provide some control over
coincidences between the resulting rhythm and a predefined set of timepoints. The target-points parameter
specifies these timepoints; it is a list in which each sublist is either a list of timepoints or a special list of the
form (:PERIODIC period begin end). The latter type of sublist represents the timepoints begin, begin + (1 ×
period), begin + (2 × period), and so on.

At each step in the construction of ldur, m-rhythm tests every duration and duration-pattern in pool;
each time it finds an element whose endpoint would coincide with a timepoint in target-points, it multiplies
the probability of that element by target-hit-weight. Thus a target-hit-weight value greater than 1
favors coincidences with target-points, while a value less than 1 disfavors them. The beginning of the
output ldur always aligns with timepoint 0.

The optional target-distance parameter determines the maximum distance that counts as a
coincidence with a timepoint in target-points. At its default value of 0, this requires points to align
precisely; larger values allow less precise alignment. Finally, when the pool includes duration-patterns
(consisting of more than one duration each), target-based weighting regulates coincidences involving the start
of these patterns, but not coincidences involving points in their interiors.

Like any system where different rules compete and sometimes conflict, the interaction here between the
main statistical controls and target-based weighting can be hard to calibrate. If results from this interaction are
unsatisfactory, it may help to adjusting the weightings closer to 1 (to favor the main statistical controls) or
further from 1 (to favor the target-based weighting effect).

[TimePack 2.5] 7

m-mapped-rhythm
inputs

pool pool of generic durations/duration-
patterns for random selection

list of M items, each item an integer
(representing a generic duration) or a list
of numbers summing to an integer
(representing a generic duration-pattern)

ptable statistical control on random selection
(Markov process)

n-dimensional table structured as a depth-
n nested list:

n=1: list of M numbers

n=2: list of M items, each item a list of
M numbers

n=3: list of M items, each item a list of
M subitems, each subitem a list of M
numbers

etc.

or list of the form

(bpf start ptable-min ptable-max)

vari-pulse list of specific durations representing
variable pulse onto which generic
durations will be mapped

list of positive numbers

tot-time desired duration of output rhythm positive number

init-conds context for first few random selections list of at least n – 1 integers, each in the
range 0 … (M – 1)

optional inputs

offset point beyond start of vari-pulse at
which the generated rhythm will begin

nonnegative number (defaults to zero)

pattern-boundary-
mode

determines format of pattern-
boundaries output

menu selection: note or note+rests

outputs

ldur list of durations representing a rhythm list of numbers

pattern-boundaries list of durations representing a rhythm list of numbers

fin-conds record of context for last random
selections when the process finishes

list of numbers

Generates a rhythm by mapping randomly-selected generic durations from pool onto a variable pulse
vari-pulse. The mapping works as follows: if the selected generic duration has integer value n, then the next
n elements of vari-pulse will be grouped together to form an element of the resulting rhythm ldur. The
restriction of generic durations to integer values is meant to ensure that the resulting rhythm is compatible
with the same metrical frameworks as the variable pulse onto which it was mapped. Note that fractional
values may be incorporated in a duration pattern, as long as the total duration of the pattern is an integer
value.

Selections from the pool are handled in the same manner as for m-rhythm, and bpf-driven interpolation is
possible on the ptable (but not the pool) parameter.

8 [TimePack 2.5]

The vari-pulse parameter can be any list of durations, but the usual assumption is that consecutive
elements should be nearly equal: given the duration j and its successor k, k should resemble j more nearly than
it resembles some integer multiple or division of j. In fact, the expected structure for vari-pulse is the type
created by the function m-vari-pulse. If a nonzero offset is specified, then ldur will be padded at the
beginning with a rest spanning a suitable number of vari-pulse elements to approximate offset.

m-empty-bars
inputs

pool pool of time signatures representing
empty bars

list of M items, each item a pair of
positive integers

ptable statistical control on random selection
(Markov process)

n-dimensional table structured as a
depth-n nested list:

n=1: list of M numbers

n=2: list of M items, each item a list of
M numbers

n=3: list of M items, each item a list of
M subitems, each subitem a list of M
numbers

etc.

or list of the form

(bpf start ptable-min ptable-max)

tot-time desired duration of output empty-bars positive number

init-conds context for first few random selections list of at least n – 1 integers, each in the
range 0 … (M – 1)

outputs

empty-bars list of time signatures representing empty
bars

list of pairs of positive integers

fin-conds record of context for last random
selections when the process finishes

list of numbers

Generates a list of empty bars. The length of each bar is determined by a time signature, which takes the
form of a pair (numer denom). The minimal requirement is for numer and denom to be positive integers;
normally, denom will be a small power of 2, as this is the usual constraint on the denominator of a time
signature. The resulting list of empty bars is intended primarily to serve as an input to m-vari-pulse.

[TimePack 2.5] 9

m-vari-pulse
inputs

pulse-map map that associates one or more pulses
with each time signature that may be
seen in empty-bars

list of sublists in which the head is a pair
of positive integers (numer denom)
representing a time signature, and the
tail contains M pulse lists, each consisting
of numbers whose absolute values sum to
the ratio numer/denom

ptable statistical control on random selection
(Markov process)

n-dimensional table structured as a
depth-n nested list:

n=1: list of M positive numbers

n=2: list of M items, each item a list of
M positive numbers

n=3: list of M items, each item a list of
M subitems, each subitem a list of M
positive numbers

etc.

or list of the form

(bpf start ptable-min ptable-max)

empty-bars list of time-signatures, each determining
the length of an empty bar

list of pairs of positive integers

init-conds context for first few random selections list of at least n – 1 integers, each in the
range 0 … (M – 1)

outputs

ldur list of durations representing a variable
pulse

list of positive numbers

fin-conds record of context for last random
selections when the process finishes

list of numbers

Generates a randomly varying pulse by selectively tracking the pulses available in pulse-map, which is
structured as as shown in Figure 3. There are two required conditions and one expected (but not required)
condition for each of the pulses in pulse-map. The first requirement is that if a rest or group of rests occurs,
the beginning of the rest or group of them must coincide with the onset of a note in another pulse. The second
requirement is that, if a pulse contains no rests, than at least one of its note onsets must coincide with a note
onset in another pulse. It is expected, furthermore, that each pulse will consist mainly of a succession of equal
durations, consistent with the usual concept of pulse; rests typically occur in cases where the measure length
cannot be evenly divided by a tuplet-based pulse.

((time-sig-1 pulse-1 pulse-2 … pulse-M) (time-sig-2 pulse-1 pulse-2 … pulse-M) …)

 Figure 3

Figure 4 gives a simple example of the structure, depicted in conventional music notation and in the
format required for the pulse-map parameter. (Tip: it can be helpful to begin by sketching a pulse map in
conventional music notation and translating it afterwards into list form for use as an input to m-vari-pulse.)

10 [TimePack 2.5]

(((2 4)
 (1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16)
 (1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20)
 (-1/2))
 ((5 8)
 (1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16)
 (1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 -1/8)
 (-1/8 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20))
 ((3 4)
 (1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16)
 (1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20)
 (-1/2)))

 Figure 4

In Figure 4, there are three pulses, and m-vari-pulse will track them selectively to construct a variable
pulse. Each of the measures found in empty-bars is expected to have time signature 2/4, 5/8, or 3/4.
Suppose the first measure is 2/4. The ptable parameter determines a weighting for Pulses 1, 2, and 3 at the
beginning of this bar, but Pulse 3 is void at this point, so tracking will begin with Pulse 1 or 2. The same pulse
continues to be tracked until one of two conditions arises: (1) the current pulse becomes void; (2) an element of
the current pulse coincides with elements of one or more of the other pulses. Each time either of these
conditions is met, pulse-map is scanned to determine which pulses contain an onset at the current time, and
one of these pulses is selected at random to be tracked next. An illustration of this process is shown in Figure 5,
with pulse-map as in Figure 4, and with empty-bars = ((2 4) (2 4) (5 8) (5 8) (2 4)). For simplicity,
ptable is not specified.

Unlike the parameter of the same name in other TimePack functions, the ptable parameter in m-vari-
pulse is restricted to nonzero probabilistic weights. This ensures that each time the conditions for random
selection are met, at least one pulse will be available for selection. (Zero-values entered by the user will be
converted internally to very small nonzero values.)

 Figure 5

[TimePack 2.5] 11

Transformations

conform
inputs

in-points list of timepoints representing a rhythm list of numbers in ascending order

to-points list of timepoints representing a rhythm list of numbers in ascending order

optional inputs

lim limit on deforming effects number

outputs

out-points list of timepoints representing a rhythm list of numbers in ascending order

Returns a list out-points in which each point in in-points is replaced by its best approximation from
to-points. The result is typically a deformation of in-points as its contents are made to conform to some
subset of the contents of to-points.

The purpose of the optional parameter lim is to limit the amount of deformation. The absolute value of
lim establishes a maximum distance that a point p can be displaced by conform. When this distance would be
exceeded, conform instead sends p to out-points unchanged (if lim is nonnegative) or witholds p from out-
points altogether (if lim is negative).

Examples
(conform ‘(0 5 15 45) ‘(1 14 18 70)) ==> (1 1 14 70)

(conform ‘(0 5 15 45) ‘(1 14 18 70) 10) ==> (1 1 14 45)

(conform ‘(0 5 15 45) ‘(1 14 18 70) -2) ==> (1 14)

m-partition
inputs

timepoints list of timepoints representing a rhythm list of numbers in ascending order

ptable statistical control on random selection
(Markov process)

n-dimensional table structured as a depth-
n nested list:

n=1: list of M numbers

n=2: list of M items, each item a list of
M numbers

n=3: list of M items, each item a list of
M subitems, each subitem a list of M
numbers

etc.

or list of the form

(bpf ptable-min ptable-max)

init-conds context for first few random selections list of at least n – 1 integers, each in the
range from 0 through M – 1 (will tolerate
a single number in place of a list
containing a single number)

12 [TimePack 2.5]

outputs

subrhythms M lists of timepoints representing rhythms list of M lists of numbers

The m-partition function partitions a rhythm into two or more subrhythms by sending each timepoint
to a randomly selected destination. Random selections are made according to a Markov process of low order
specified in ptable. If ptable is 1-dimensional, the probabilistic weight of each destination is constant (apart
from the possibility of evolving probabilities, which operate as in the m-rhythm function). If ptable is n-
dimensional, the probabilistic weights in effect for each selection depend on the most recent (n – 1) selections,
or on init-conds at the beginning of the process. The number of destinations (sublists in the output
subrhythms) is determined by the shape and size of ptable: an M×M×…×M table implies M destinations.

Interpolation between two probability tables is accomplished as in the m-rhythm function. To partition a
list of durations rather than timepoints, begin by processing the list with OpenMusic’s x->dx function.

Utilities

timepoints->density
inputs

timepoints list of timepoints representing a rhythm list of numbers in ascending order

framesize density is measure in timepoints per frame positive number

tmin timepoints at which density measurement
begins

number

tmax timepoint at which density measurement
ends

number

outputs

x-points starting timepoints of successive frames list of numbers

y-points each element counts timepoints that occur
within frame beginning at corresponding
element of x-points

list of nonnegative integers

Counts the number of timepoints in successive frames of size framesize, starting at tmin and continuing
until tmax is reached or exceeded. Returns two lists: x-points lists the startpoints of successive frames, and y-
points counts the timepoints in each frame (on or after the startpoint, and before the next frame’s startpoint).
These lists can be connect to the bpf-factory inlets of the same names to create a bpf that plots the
fluctuating density of timepoints per frame.

One suggested use of this function is to generate a new rhythm whose most active regions occur during
periods of inactivity in an existing rhythm. To achieve this result:

1. if the existing rhythm is a list of durations, convert it to a list of timepoints using dx->x

2. process the timepoint list with timepoints->density

3. wire the resulting x-points and y-points to a bpf-factory to produce a bpf representation of the
original rhythm’s density

4. set up a rhythm-generating patch using (for example) m-rhythm, and use the bpf from step (4) to control
interpolation between a ptable describing more active behavior (for ptable-min) and one describing less
active behavior (for ptable-max)

[TimePack 2.5] 13

Example
(timepoints->density '(0 5 10 30 31 32 33 34 35 36 37 38 39 40 45 50 60 70)

10
0
50)

==> (0 10 20 30 40 50)
(2 1 0 10 2 1)

resize-ptable
inputs

in-table probability table list of M numbers; or list of M items, each
item a list of M numbers

pieces description of how to resize in-table list of pairs; each pair a list of two positive
integers

outputs

out-table probability table list of N numbers; or list of N items, each
item a list of N numbers

Allows a probability table to be used with an event space of a different size and/or structure than the one
for which it was originally designed.

Tries to express the shape of in-table in a new probability table related to the original in a way
expressed by pieces. The first pair (in1 out1) in pieces means “express the first in1 rows and columns of in-
table in the first out1 rows and columns of out-table”, and successive pairs control the processing of
successive rows and columns. For example, the pieces list ((7 8)) takes a 7×7 in-table and produces an
8×8 out-table; the pieces list ((4 4) (3 4)) does the same thing but concentrates the change in the last
three columns of in-table.

In the pieces list, the sum of the first elements of all the pairs must equal the size M of each in-table
dimension, and the sum of the second elements of all the pairs determines the size N of each out-table
dimension.

thru
inputs

in input data any value

outputs

out input data unchanged same value

Passes data through unchanged. Intended to facilitate layout of a complex patch onscreen.

14 [TimePack 2.5]

gm-pgmout
inputs

pgm General MIDI patch name menu selection
(standard 128 patch names)

chan MIDI channel 1–16

Sends MIDI program change to patch pgm on channel chan.

Constants

max-pool-size
The pool of durations/duration-patterns from which random selections are made is limited to this size at

maximum (default value: 64). Changing this value is not recommended.

max-ptable-rank
The largest-order Markov process available is one less than this limit (default value: 3). Changing this

value is not recommended.

[TimePack 2.5] 15

Tutorial patches

m-rhythm basics
This patch contains two demonstrations of basic uses of the m-rhythm function. On the left-hand side

(Figure 6), m-rhythm is used on a pool of six durations ranging from 100 to 2750. (The units depend on
context, but it’s reasonable to assume these are milliseconds.) Each duration is assigned a fixed probabilistic

weight: the duration 100 has a weight of
10

10 + 7 + 5 + 3 + 2 + 1 = 0.357, and so on. The m-rhythm object will

make random selections from the pool repeatedly, appending them to the list returned at the first outlet, until
the accumulated duration is at least 10000 milliseconds. The resulting list of durations is then converted by
omquantify into a rhythm tree and sent to a voice factory for display in conventional music notation.
Because m-rhythm is based on a random process, each time you evaluate the voice factory you will see a
different (but statistically similar) rhythmic result.

 Figure 6

The right-hand side of the same patch shows m-rhythm used with more complicated parameters (Figure
7). In this case, the pool consists of four elements, two of which are duration-patterns. The ptable is
structured as a 4×4 table, so each random selection influences the probabilities that will be used at the next
step. For instance, if the last element, 2000, is chosen at step n, then at step n+1 the four elements will have
probabilities of 0.231, 0.231, 0.538, and 0, as determined by the last row of ptable. Since duration-patterns
are used, it is interesting to trace individual durations to the patterns that include them, so we wire the second
outlet (which reports pattern boundaries) to an additional omquantify object and voice factory and then
combine the two voices in a poly object. Because the m-rhythm object feeds two subsequent objects in this
example, it is put into “1” mode.1 Otherwise the two objects would receive different randomly generated
results, and the pattern boundaries captured in voice 2 would not match up to the content of voice 1.

1 To access this mode: select the m-rhythm object, press “b” to get a small box marked “X,” and click that box
once to switch it to “1.”

16 [TimePack 2.5]

 Figure 7

m-rhythm interpolation
There are three parts to this patch. The first two (both given in Figure 8) show m-rhythm used with the

same pool but two different ptable parameters.

 Figure 8

[TimePack 2.5] 17

In the third (rightmost) part of this patch (shown in Figure 9), the same pool is used once more. The
ptable this time is a more complex structure, combining both of the preceding ptable parameters, with
interpolation between the two driven by a break-point function (bpf). The bpf begins at its maximum value
and drops almost instantaneously to its minimum value. Thus random selections will be controlled by the
probabilities in the second table initially, and by the first table further on. If you study typical outputs from
parts one and two of this patch, you will be able to recognize the shift from one characteristic to the other
partway through the output from this third part of the patch.

 Figure 9

m-rhythm target
This patch (Figure 10) demonstrates some of the effects possible with the target-based weighting feature of

m-rhythm. In addition to the usual connections to the first four inlets of m-rhythm, connections are made here
to the target-points and target-hit-weight (sixth and seventh) inlets. When the “selector” box at the
upper right is set to 0, the target-based-weighting feature is inactive. Changing the selector to 1 sets target-
points to the sequence (0 1/2 1 3/2 … 11) and target-hit-weight to 0.1. With these settings, a choice
from the pool will have its probabilistic weight multiplied by 0.1 whenever it would produce a note coinciding
with one of the target-points. When the time signature is 2/4, the target-points are successive
downbeats, and these settings result in rhythms that tend to avoid the downbeat. Finally, changing the selector
to 2 sets target-points to the sequence (0 1/24 1/12 3/24 … 11) and target-hit-weight to 20. With
these settings, a choice from the pool will have its probabilistic weight multiplied by 20 whenever it would
produce a note coinciding with one of the target-points. This results in rhythms that tend to adhere to a
grid of triplet sixteenth notes.

Target-based weighting can also be used to generate a counter-rhythm that seeks out or avoids
coincidences with a rhythm you have already generated. In this application, the already-generated rhythm
would serve as the target-points parameter, and target-hit-weight would be set to favor or disfavor
coincidences with it.

18 [TimePack 2.5]

 Figure 10

m-rhythm cascade
This patch shows two m-rhythm objects arranged in a cascade (Figure 11), with the fin-conds output of

the first object feeding the init-conds input of the second. While interpolation between two probability
tables (or event pools) can be handled by a bpf driving a single m-rhythm object, cascade structures like the
one illustrated here allow a larger number of tables (or pools) to be involved. In this case, the first m-rhythm
object goes from ptable1 to ptable2, while the second goes from ptable2 to ptable3.

 Figure 11

[TimePack 2.5] 19

m-partition
This patch uses m-partition to distribute a given list of timepoints between two destination lists (Figure

12); the original list and its distributed parts are collected in chord-seq objects and combined in a multi-seq
object. Select the timepoints object and press “v” to see its contents displayed in the Listener window. The
number of partitions is determined by the shape and size of the ptable parameter; in this case, a 2×2 table
controls partitioning between two destinations. These destinations are associated with contrasting pitches so
the effect of partitioning can be heard easily in the resulting multi-seq.

The use of chord-seq (rather than voice) objects in this patch eliminates the need for quantization. The
unquantized data could be used to drive a synthesis engine, or it could be saved as a MIDI file and opened in
a sequencer for additional processing.

 Figure 12

empty-bars vari-pulse
The left-hand side of this patch (Figure 13) uses m-empty-bars to construct a list of empty bars spanning

25 whole-note units, where each empty bar is determined by a time signature represented as a (numerator
denominator) pair. The statistical controls on this process involve bpf-driven interpolation between two
probability tables: the left-hand table at the beginning of the process and the right-hand table at the end, with
a gradual transition in between. A particular instance of the output from this object has been created (by shift-
option clicking on the first outlet) and named “empty-bars.” It will be put to use twice: as an input to m-vari-
pulse on the right-hand side of this patch, and in the tutorial patch mapped-rhythm.

20 [TimePack 2.5]

 Figure 13

The right-hand side of the same patch (Figure 14) uses m-vari-pulse to fill “empty-bars” with a pulse
that varies, according to statistical controls, while maintaining an idiomatic fit to the metrical constraints of
“empty-bars.” Double-click on the pulse-map subpatch to see how this parameter is formatted, and compare
Figure 15, which shows the same data in conventional music notation. Because m-vari-pulse operates by
tracing portions of the pulses in pulse-map, it can be converted to a rhythm tree (via mktree) to produce a
metrically coherent result with no need for quantization. Note that the “empty-bars” list, used as a parameter
of m-vari-pulse, is also supplied to mktree, so that the resulting variable pulse can be viewed in the
appropriate metrical setting.

 Figure 14

 Figure 15

[TimePack 2.5] 21

mapped-rhythm
In this patch demonstrating m-mapped-rhythm (Figure 16), the “empty-bars” and “vari-pulse” elements

both derive from the tutorial patch empty-bars vari-pulse; “empty-bars” is not required by m-mapped-
rhythm but is used further on by mktree in order to construct an appropriate metrical setting for the resulting
mapped rhythm.

The pool from which m-mapped-rhythm makes random selections consists of a duration-pattern (1/2
1/2 1/2 1/2) and six simple durations. Each of these elements consists of one or more generic durations that
will assume specific values once they are mapped onto a portion of “vari-pulse.” The generic duration 5, for
instance, means “combine the next five elements of ‘vari-pulse’ and append the resulting duration to the
output rhythm.” Note that the duration-pattern in the pool includes fractional values, but that its contents still
sum to an integer value as required. This allows access to sub-pulse details while keeping the output rhythm
aligned to the variable pulse and its associated metrical context. The random selections are controlled, as
usual, by the data supplied to the ptable inlet.

 Figure 16

